In this paper, we present a complete pipeline for computing structure-from-motion from the sequences of spherical images. We revisit problems from multiview geometry in the context of spherical images. In particular, we propose methods suited to spherical camera geometry for the spherical-n-point problem (estimating camera pose for a spherical image) and calibrated spherical reconstruction (estimating the position of a 3-D point from multiple spherical images). We introduce a new probabilistic interpretation of spherical structure-from-motion which uses the von Mises-Fisher distribution to model noise in spherical feature point positions. This model provides an alternate objective function that we use in bundle adjustment. We evaluate our methods quantitatively and qualitatively on both synthetic and real world data and show that our methods developed for spherical images outperform straightforward adaptations of methods developed for perspective images. As an application of our method, we use the structure-from-motion output to stabilise the viewing direction in fully spherical video.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TIP.2016.2621662DOI Listing

Publication Analysis

Top Keywords

spherical images
16
spherical
10
spherical video
8
von mises-fisher
8
mises-fisher distribution
8
methods developed
8
images
5
structure-from-motion
4
structure-from-motion spherical
4
video von
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!