A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Elastic Functional Coding of Riemannian Trajectories. | LitMetric

Visual observations of dynamic phenomena, such as human actions, are often represented as sequences of smoothly-varying features. In cases where the feature spaces can be structured as Riemannian manifolds, the corresponding representations become trajectories on manifolds. Analysis of these trajectories is challenging due to non-linearity of underlying spaces and high-dimensionality of trajectories. In vision problems, given the nature of physical systems involved, these phenomena are better characterized on a low-dimensional manifold compared to the space of Riemannian trajectories. For instance, if one does not impose physical constraints of the human body, in data involving human action analysis, the resulting representation space will have highly redundant features. Learning an effective, low-dimensional embedding for action representations will have a huge impact in the areas of search and retrieval, visualization, learning, and recognition. Traditional manifold learning addresses this problem for static points in the euclidean space, but its extension to Riemannian trajectories is non-trivial and remains unexplored. The difficulty lies in inherent non-linearity of the domain and temporal variability of actions that can distort any traditional metric between trajectories. To overcome these issues, we use the framework based on transported square-root velocity fields (TSRVF); this framework has several desirable properties, including a rate-invariant metric and vector space representations. We propose to learn an embedding such that each action trajectory is mapped to a single point in a low-dimensional euclidean space, and the trajectories that differ only in temporal rates map to the same point. We utilize the TSRVF representation, and accompanying statistical summaries of Riemannian trajectories, to extend existing coding methods such as PCA, KSVD and Label Consistent KSVD to Riemannian trajectories or more generally to Riemannian functions. We show that such coding efficiently captures trajectories in applications such as action recognition, stroke rehabilitation, visual speech recognition, clustering and diverse sequence sampling. Using this framework, we obtain state-of-the-art recognition results, while reducing the dimensionality/ complexity by a factor of 100-250x. Since these mappings and codes are invertible, they can also be used to interactively-visualize Riemannian trajectories and synthesize actions.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TPAMI.2016.2564409DOI Listing

Publication Analysis

Top Keywords

riemannian trajectories
24
trajectories
12
riemannian
8
embedding action
8
euclidean space
8
space
5
elastic functional
4
functional coding
4
coding riemannian
4
trajectories visual
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!