This paper proposes a facial expression recognition system using evolutionary particle swarm optimization (PSO)-based feature optimization. The system first employs modified local binary patterns, which conduct horizontal and vertical neighborhood pixel comparison, to generate a discriminative initial facial representation. Then, a PSO variant embedded with the concept of a micro genetic algorithm (mGA), called mGA-embedded PSO, is proposed to perform feature optimization. It incorporates a nonreplaceable memory, a small-population secondary swarm, a new velocity updating strategy, a subdimension-based in-depth local facial feature search, and a cooperation of local exploitation and global exploration search mechanism to mitigate the premature convergence problem of conventional PSO. Multiple classifiers are used for recognizing seven facial expressions. Based on a comprehensive study using within- and cross-domain images from the extended Cohn Kanade and MMI benchmark databases, respectively, the empirical results indicate that our proposed system outperforms other state-of-the-art PSO variants, conventional PSO, classical GA, and other related facial expression recognition models reported in the literature by a significant margin.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TCYB.2016.2549639DOI Listing

Publication Analysis

Top Keywords

facial expression
8
expression recognition
8
feature optimization
8
conventional pso
8
pso
6
facial
6
micro-ga embedded
4
embedded pso
4
feature
4
pso feature
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!