Accurate and high-quality depth maps are required in lots of 3D applications, such as multi-view rendering, 3D reconstruction and 3DTV. However, the resolution of captured depth image is much lower than that of its corresponding color image, which affects its application performance. In this paper, we propose a novel depth map super-resolution (SR) method by taking view synthesis quality into account. The proposed approach mainly includes two technical contributions. First, since the captured low-resolution (LR) depth map may be corrupted by noise and occlusion, we propose a credibility based multi-view depth maps fusion strategy, which considers the view synthesis quality and interview correlation, to refine the LR depth map. Second, we propose a view synthesis quality based trilateral depth-map up-sampling method, which considers depth smoothness, texture similarity and view synthesis quality in the up-sampling filter. Experimental results demonstrate that the proposed method outperforms state-of-the-art depth SR methods for both super-resolved depth maps and synthesized views. Furthermore, the proposed method is robust to noise and achieves promising results under noise-corruption conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TIP.2017.2656463 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!