Robotic-assisted minimally invasive surgeries have gained a lot of popularity over conventional procedures as they offer many benefits to both surgeons and patients. Nonetheless, they still suffer from some limitations that affect their outcome. One of them is the lack of force feedback which restricts the surgeon's sense of touch and might reduce precision during a procedure. To overcome this limitation, we propose a novel force estimation approach that combines a vision based solution with supervised learning to estimate the applied force and provide the surgeon with a suitable representation of it. The proposed solution starts with extracting the geometry of motion of the heart's surface by minimizing an energy functional to recover its 3D deformable structure. A deep network, based on a LSTM-RNN architecture, is then used to learn the relationship between the extracted visual-geometric information and the applied force, and to find accurate mapping between the two. Our proposed force estimation solution avoids the drawbacks usually associated with force sensing devices, such as biocompatibility and integration issues. We evaluate our approach on phantom and realistic tissues in which we report an average root-mean square error of 0.02 N.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TOH.2016.2640289DOI Listing

Publication Analysis

Top Keywords

force feedback
8
force estimation
8
applied force
8
force
6
retrieving force
4
feedback robotic-assisted
4
robotic-assisted surgery
4
surgery supervised
4
supervised neuro-recurrent-vision
4
neuro-recurrent-vision approach
4

Similar Publications

Article Synopsis
  • The study focuses on how augmented feedback training can help reduce vertical ground reaction forces (vGRF) in female athletes landing from a height, ultimately aiming to prevent ACL tears.
  • A total of 147 participants were tested under different conditions, leading to the identification of four response groups, with most athletes showing improvement from training.
  • Findings highlight that both initial vGRF levels and the athletes' responses to training are crucial in predicting how well they can benefit from augmented feedback.
View Article and Find Full Text PDF

Background: Correct identification of the epidural space requires extensive training for technical proficiency. This study explores a novel bimanual haptic simulator designed for the precise insertion of an epidural needle based on loss-of-resistance (LOR) detection, providing realistic dual-hand force feedback.

Methods: The simulator, equipped with two haptic devices connected to a Tuohy needle and an LOR syringe, was designed to simulate the tissues' resistive forces felt by the user during the procedure, offer anatomical variability and record detailed performance metrics for personalized feedback.

View Article and Find Full Text PDF

This study aimed to develop and validate a cost-effective, customizable patient-specific phantom for simulating external ventricular drain placement, combining image segmentation, 3-D printing and molding techniques. Two variations of the phantom were created based on patient MRI data, integrating a realistic skin layer with anatomical landmarks, a 3-D printed skull, an agarose polysaccharide gel brain, and a ventricular cavity. To validate the phantom, 15 neurosurgeons, residents, and physician assistants performed 30 EVD placements.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers explored how visual feedback on interaction forces enhances the performance of haptic-assisted teleoperation for robotic arms in industrial tasks.
  • They developed a new method for providing visual cues in a virtual environment and evaluated it alongside a head-mounted display during experiments focused on dross removal.
  • Results demonstrated that both methods improved task performance, with visual cues enhancing safety and the head-mounted display significantly boosting overall performance, leading to higher user acceptance of both approaches.
View Article and Find Full Text PDF

Accurate control of force on the environment is mechanically necessary for many tasks involving the lower extremities. We investigated drifts in the horizontal (shear) active force produced by right-footed seated subjects and the effects of force matching by the other foot. Subjects generated constant shear force at 15% and 30% of maximal voluntary contraction (MVC) using one foot.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!