Due to the couplings among joint-relative muscles, it is a challenge to accurately estimate continuous multi-joint movements from multi-channel sEMG signals. Traditional approaches always build a nonlinear regression model, such as artificial neural network, to predict the multi-joint movement variables using sEMG as inputs. However, the redundant sEMG-data are always not distinguished; the prediction errors cannot be evaluated and corrected online as well. In this work, a correlation-based redundancy-segmentation method is proposed to segment the sEMG-vector including redundancy into irredundant and redundant subvectors. Then, a general state-space framework is developed to build the motion model by regarding the irredundant subvector as input and the redundant one as measurement output. With the built state-space motion model, a closed-loop prediction-correction algorithm, i.e., the unscented Kalman filter (UKF), can be employed to estimate the multi-joint angles from sEMG, where the redundant sEMG-data are used to reject model uncertainties. After having fully employed the redundancy, the proposed method can provide accurate and smooth estimation results. Comprehensive experiments are conducted on the multi-joint movements of the upper limb. The maximum RMSE of the estimations obtained by the proposed method is 0.16±0.03, which is significantly less than 0.25±0.06 and 0.27±0.07 (p < 0.05) obtained by common neural networks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TNSRE.2016.2639527 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!