A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Analyzing Seismocardiogram Cycles to Identify the Respiratory Phases. | LitMetric

Goal: the objective of this study was to develop a method to identify respiratory phases (i.e., inhale or exhale) of seismocardiogram (SCG) cycles. An SCG signal is obtained by placing an accelerometer on the sternum to capture cardiac vibrations.

Methods: SCGs from 19 healthy subjects were collected, preprocessed, segmented, and labeled. To extract the most important features, each SCG cycle was divided to equal-sized bins in time and frequency domains, and the average value of each bin was defined as a feature. Support vector machines was employed for feature selection and identification. The features were selected based on the total accuracy. The identification was performed in two scenarios: leave-one-subject-out (LOSO), and subject-specific (SS).

Results: time-domain features resulted in better performance. The time-domain features that had higher accuracies included the characteristic points correlated with aortic-valve opening, aortic-valve closure, and the length of cardiac cycle. The average total identification accuracies were 88.1% and 95.4% for LOSO and SS scenarios, respectively.

Conclusion: the proposed method was an efficient, reliable, and accurate approach to identify the respiratory phases of SCG cycles.

Significance: The results obtained from this study can be employed to enhance the extraction of clinically valuable information such as systolic time intervals.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TBME.2016.2621037DOI Listing

Publication Analysis

Top Keywords

identify respiratory
12
respiratory phases
12
time-domain features
8
analyzing seismocardiogram
4
seismocardiogram cycles
4
cycles identify
4
phases goal
4
goal objective
4
objective study
4
study develop
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!