Photonic quantum computer, quantum communication, quantum metrology and quantum optical technologies rely on the single-photon source (SPS). However, the SPS with valley-polarization remains elusive and the tunability of magneto-optical transition frequency and emission/absorption intensity is restricted, in spite of being highly in demand for valleytronic applications. Here we report a new class of SPSs based on carriers spatially localized in two-dimensional monolayer transition metal dichalcogenide quantum dots (QDs). We demonstrate that the photons are absorbed (or emitted) in the QDs with distinct energy but definite valley-polarization. The spin-coupled valley-polarization is invariant under either spatial or magnetic quantum quantization. However, the magneto-optical absorption peaks undergo a blue shift as the quantization is enhanced. Moreover, the absorption spectrum pattern changes considerably with a variation of Fermi energy. This together with the controllability of absorption spectrum by spatial and magnetic quantizations, offers the possibility of tuning the magneto-optical properties at will, subject to the robust spin-coupled valley polarization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5253649 | PMC |
http://dx.doi.org/10.1038/srep41044 | DOI Listing |
Nano Lett
January 2025
Instituto de Química Física Blas Cabrera (IQF), CSIC, 28006 Madrid, Spain.
We investigate the emergence of self-hybridized thermal magnetoplasmons in doped graphene nanodisks at finite temperatures upon being subjected to an external magnetic field. Using a semianalytical approach, which fully describes the eigenmodes and polarizability of the graphene nanodisks, we show that the hybridization originates from the coupling of transitions between thermally populated Landau levels and localized magnetoplasmon resonances of the nanodisks. Owing to their origin, these modes combine the extraordinary magneto-optical response of graphene with the strong field enhancement of plasmons, making them an ideal tool for achieving strong chiral light-matter interactions, with the additional advantage of being tunable through carrier concentration, magnetic field, and temperature.
View Article and Find Full Text PDFNanophotonics
November 2024
Universite Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, UMR5306, F-69100, Villeurbanne, France.
In view of the recent increased interest in light-induced manipulation of magnetism in nanometric length scales this work presents metal clusters as promising elementary units for generating all-optical ultrafast magnetization. We perform a theoretical study of the opto-magnetic properties of metal clusters through ab-initio real-time (RT) simulations in real-space using time-dependent density functional theory (TDDFT). Through ab-initio calculations of plasmon excitation with circularly polarized laser pulse in atomically precise clusters of simple and noble metals, we discuss the generation of orbital magnetic moments due to the transfer of angular momentum from light field through optical absorption at resonance energies.
View Article and Find Full Text PDFPhys Chem Chem Phys
November 2024
Departamento de Física, Universidade Federal do Paraná, Caixa Postal 19044, CEP 81531-990, Curitiba, Paraná, Brazil.
The magneto-optical properties of heavily iron-doped GaAs are investigated. Complex permittivity, optical conductivity and absorption coefficients are mainly discussed using spin-polarized electronic band structures close to the Fermi energy level. Furthermore, prominent magneto-optical properties in visible light and ultraviolet regions, including magnetic circular dichroism as well as complex Kerr and Faraday rotation angles, are presented and discussed.
View Article and Find Full Text PDFNatl Sci Rev
September 2024
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
The spin of electrons plays a vital role in chemical reactions and processes, and the excited state generated by the absorption of photons shows abundant spin-related phenomena. However, the importance of electron spin in photochemistry studies has been rarely mentioned or summarized. In this review, we briefly introduce the concept of spin photochemistry based on the spin multiplicity of the excited state, which leads to the observation of various spin-related photophysical properties and photochemical reactivities.
View Article and Find Full Text PDFWe present a novel, to the best of our knowledge, magneto-optical (MO) metasurface composed of a bismuth iron garnet (BIG) nanocube array, designed to achieve near-perfect absorption through quasi-bound states in the continuum (QBICs). This metasurface supports a stable QBIC mode induced by MO-induced permittivity terms that break the symmetry of the permittivity tensors, corresponding to a longitudinal electric dipole (ED) mode. By integrating graphene to introduce material loss, the absorption reaches 99.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!