A study of strong halogen bonding within three series of halogen-bonded complexes, derived from seven para-substituted pyridine derivatives and three N-halosuccinimides (iodo, bromo and chloro), has been undertaken with the aid of single-crystal diffraction, solution complexation and computational methods. The halogen bond was compared with the hydrogen bond in an equivalent series based on succinimide. The halogen-bond energies are in the range -60 to -20 kJ mol and change regularly with pyridine basicity and the Lewis acidity of the halogen. The halogen-bond energies correlate linearly with the product of charges on the contact atoms, which indicates a predominantly electrostatic interaction. The binding enthalpies in solution are around 19 kJ mol less negative due to solvation effects. The optimised geometries of the complexes in the gas phase are comparable to those of the solid-state structures, and the effects of the supramolecular surroundings in the latter are discussed. The bond energies for the hydrogen-bonded series are intermediate between the halogen-bond energies of iodine and bromine, although there are specific differences in the geometries of the halogen- and hydrogen-bonded complexes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201605686 | DOI Listing |
J Chem Inf Model
January 2025
Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Gilead Sciences & IOCB Research Centre, Flemingovo nám. 2, 166 10 Prague, Czech Republic.
The use of quantum mechanical potentials in protein-ligand affinity prediction is becoming increasingly feasible with growing computational power. To move forward, validation of such potentials on real-world challenges is necessary. To this end, we have collated an extensive set of over a thousand galectin inhibitors with known affinities and docked them into galectin-3.
View Article and Find Full Text PDFThe [CH3OH-CH2X2] (X = Cl, Br, and I) complexes have been studied to understand the tendency towards the formation of hydrogen bonds and halogen bonds. Three different types of interactions viz., C-X· · ·O, C-H· · ·O, and O-H· · ·X, are possible between the CH3OH and CH2X2.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China.
Potassium-iodine batteries show great promise as alternatives for next-generation battery technology, owing to their high power density and environmental sustainability. Nevertheless, they suffer from polyiodide dissolution and the multistep electrode fabrication process, which leads to severe performance degradation and limitations in mass-market adoption. Herein, we report a simple "solution-adsorption" strategy for scale-up production of TiC(OH)-wrapped carbon nanotube paper (CNP), as an economic host for strengthening the iodine encapsulation.
View Article and Find Full Text PDFJ Comput Chem
January 2025
Institute of Chemistry, Saint Petersburg State University, St. Petersburg, Russia.
In the framework of SMD approach a systematic computational study of structural, electronic and thermodynamic properties of molecular complexes of Cl, ICl and I with series of N-containing Lewis bases in solvents of different polarity was carried out. Results indicate that molecular complexes of Cl with strong and medium-strong LB undergo spontaneous ionization in the acetonitrile solution. The increase of the solvent polarity can change the nature of interaction in X'XLB systems from molecular X'X ← LB donor-acceptor complexes to 3-center 4-electron bound X'→X ← LB in solvents of medium polarity and to the contact ion pairs X'→[XLB] in polar solvents.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Chemistry & Biochemistry, Texas Christian University, Fort Worth, Texas 76129, USA.
A σ-hole is an electron-deficient region of positive electrostatic potential (ESP) opposite from a half-filled p orbital involved in forming a covalent bond. The σ-hole concept helps rationalize directional noncovalent interactions, known as σ-hole bonds, between covalently bonded group V-VII atoms and electron-pair donors. The magnitude and orientation of σ-holes are correlated with the strength and geometry of halogen bonds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!