Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Introduction: Tinospora cordifolia is a widely distributed medicinal plant used in various traditional and commercial Ayurvedic formulations. Due to the wide use of this plant it is important to know the extent of variability in the metabolite profile resulting from geographical location, season and gender.
Objective: To develop a statistical approach based on phytochemical markers for confident prediction of variations in metabolic profile and cytotoxicity due to geographical, seasonal and gender difference in T. cordifolia stem.
Methods: A HPLC-ESI-QTOF-MS method was used for the metabolite profiling of T. cordifolia stem. The data were analysed using chemometric methods including Student's t-test, ANOVA, FA/PCA and ROC curve analysis and validated for the identification of chemical variations. The bioactivity of selected samples was also tested using a cell cytotoxicity assay to assess the functional aspect of the phytochemical variability.
Results: The chemometric approach applied here identified marker ions for geographical locations (m/z 294.1139 and 445.2136), seasons (m/z 344.1482, 359.1501, and 373.1305) and gender (m/z 257.1380) with 100% statistical sensitivity and specificity. An in vitro cytotoxicity evaluation revealed that male T. cordifolia stem was the most effective in inhibiting the growth of cancerous cell lines.
Conclusions: The developed and validated chemometric approach identified the analytical markers for phytochemical variations in unknown T. cordifolia stem samples from male or female plants and samples collected from different geographical locations and seasons. The results are supported by comparative cytotoxic activity data. Copyright © 2017 John Wiley & Sons, Ltd.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/pca.2673 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!