This study aimed to develop an automated model to extract temporal features from DCE-MRI in head-and-neck (HN) cancers to localize significant tumor subvolumes having low blood volume (LBV) for predicting local and regional failure after chemoradiation therapy. Temporal features were extracted from time-intensity curves to build classification model for differentiating voxels with LBV from those with high BV. Support vector machine (SVM) classification was trained on the extracted features for voxel classification. Subvolumes with LBV were then assembled from the classified voxels with LBV. The model was trained and validated on independent datasets created from 456 873 DCE curves. The resultant subvolumes were compared to ones derived by a 2-step method via pharmacokinetic modeling of blood volume, and evaluated for classification accuracy and volumetric similarity by DSC. The proposed model achieved an average voxel-level classification accuracy and DSC of 82% and 0.72, respectively. Also, the model showed tolerance on different acquisition parameters of DCE-MRI. The model could be directly used for outcome prediction and therapy assessment in radiation therapy of HN cancers, or even supporting boost target definition in adaptive clinical trials with further validation. The model is fully automatable, extendable, and scalable to extract temporal features of DCE-MRI in other tumors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5243121PMC
http://dx.doi.org/10.18383/j.tom.2016.00199DOI Listing

Publication Analysis

Top Keywords

temporal features
12
radiation therapy
8
extract temporal
8
features dce-mri
8
blood volume
8
voxels lbv
8
classification accuracy
8
model
7
classification
5
temporal
4

Similar Publications

A Spatiotemporal Feature-Based Approach for the Detection of Unlicensed Taxis in Urban Areas.

Sensors (Basel)

December 2024

School of Urban Construction and Transportation, Hefei University, Hefei 230601, China.

Unlicensed taxis seriously disrupt the transportation market order, and threaten passenger safety. Therefore, this paper proposes a method for identifying unlicensed taxis based on travel characteristics. First, the vehicle mileage and operation time are calculated using traffic surveillance bayonet data, and variance analysis is applied to identification indicators for unlicensed taxis.

View Article and Find Full Text PDF

Attention-Based PSO-LSTM for Emotion Estimation Using EEG.

Sensors (Basel)

December 2024

Department of Information and Electronic Engineering, International Hellenic University, 57001 Thessaloniki, Greece.

Recent advances in emotion recognition through Artificial Intelligence (AI) have demonstrated potential applications in various fields (e.g., healthcare, advertising, and driving technology), with electroencephalogram (EEG)-based approaches demonstrating superior accuracy compared to facial or vocal methods due to their resistance to intentional manipulation.

View Article and Find Full Text PDF

Electrocardiogram (ECG) signals contain complex and diverse features, serving as a crucial basis for arrhythmia diagnosis. The subtle differences in characteristics among various types of arrhythmias, coupled with class imbalance issues in datasets, often hinder existing models from effectively capturing key information within these complex signals, leading to a bias towards normal classes. To address these challenges, this paper proposes a method for arrhythmia classification based on a multi-branch, multi-head attention temporal convolutional network (MB-MHA-TCN).

View Article and Find Full Text PDF

Deep FS: A Deep Learning Approach for Surface Solar Radiation.

Sensors (Basel)

December 2024

Department of Computer Engineering, Konya Food and Agriculture University, Konya 42080, Turkey.

Contemporary environmental challenges are increasingly significant. The primary cause is the drastic changes in climates. The prediction of solar radiation is a crucial aspect of solar energy applications and meteorological forecasting.

View Article and Find Full Text PDF

Traditional tactile brain-computer interfaces (BCIs), particularly those based on steady-state somatosensory-evoked potentials, face challenges such as lower accuracy, reduced bit rates, and the need for spatially distant stimulation points. In contrast, using transient electrical stimuli offers a promising alternative for generating tactile BCI control signals: somatosensory event-related potentials (sERPs). This study aimed to optimize the performance of a novel electrotactile BCI by employing advanced feature extraction and machine learning techniques on sERP signals for the classification of users' selective tactile attention.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!