Brachydactyly type E is a congenital limb malformation characterized by small hands and feet as a result of shortened metacarpals and metatarsals. Genetic causes of this anomaly are heterogeneous and only partially characterized. In this report we describe an Italian family in which four subjects share brachydactyly type E and a 3 Mb microduplication in region 6p25. The duplication involves the gene FOXC1, expressed during the osteoblast differentiation, which appears a potential candidate gene for brachydactyly.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmg.2017.01.006DOI Listing

Publication Analysis

Top Keywords

brachydactyly type
12
italian family
8
brachydactyly
4
type italian
4
family 6p25
4
6p25 trisomy
4
trisomy brachydactyly
4
type congenital
4
congenital limb
4
limb malformation
4

Similar Publications

Hypertension is a growing concern worldwide, with increasing prevalence rates in both children and adults. Most cases of hypertension are multifactorial, with various genetic, environmental, socioeconomic, and lifestyle influences. However, monogenic hypertension, a blanket term for a group of rare of hypertensive disorders, is caused by single-gene mutations that are typically inherited in an autosomal dominant fashion, and ultimately disrupt normal blood pressure regulation in the kidney or adrenal gland.

View Article and Find Full Text PDF

Background: Acromesomelic chondrodysplasias are a rare subgroup of the clinically and genetically heterogeneous osteochondrodysplasias that are characterised by abnormalities in the limb development and short stature. Here, we report a 2-year-old boy, offspring of consanguineous parents, with acromesomelic dysplasia and postaxial polydactyly in which exome sequencing identified a novel homozygous missense variant in BMPR1B. The patient showed skeletal malformation of both hands and feet that included complex brachydactyly with the thumbs most severely affected, postaxial polydactyly of both hands, shortened toes as well as a bilateral hypoplasia of the fibula.

View Article and Find Full Text PDF

Background: Bone Morphogenetic Proteins and the related Growth and Differentiation Factors (GDFs) are much conserved signaling proteins. GDF5 is pivotal for skeletal development. Several skeletal dysplasia and malformation syndromes are known as a result of mutations in .

View Article and Find Full Text PDF
Article Synopsis
  • The DYNC2H1 gene is linked to short-rib polydactyly syndrome (SRPS) and other skeletal ciliopathies, with two unique cases highlighting distinct phenotypes caused by splicing variants.
  • The first case involved a 14-week-old fetus with severe malformations and two compound heterozygous variants that were initially uncertain but later deemed likely pathogenic after further testing.
  • The second case presented an 11-year-old boy with various physical abnormalities and identified variants in DYNC2H1, underscoring the gene's role in conditions like SRPS and orofaciodigital syndrome, enhancing understanding of splicing variants' impacts.
View Article and Find Full Text PDF

Hypertension requires increased systemic vascular resistance. Thus far, Mendelian hypertension-related genes are related to salt retention, an indirect regulatory effect. With the identification of mutated, overactive, PDE3A (phosphodiesterase 3A), we have uncovered a more direct vasoconstrictive mechanism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!