In vitro characterization of the novel H3N1 reassortant influenza viruses from quail.

Vet Microbiol

Emerging and Re-emerging Infectious Diseases in Animals (CUEIDAs), Center of Excellence, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand; Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand. Electronic address:

Published: February 2017

Quail is considered as an intermediate host for generation of the novel reassortant influenza A viruses (IAVs). In this study, we evaluated the replication ability of the three novel H3N1 reassortant viruses recovered from pandemic H1N1 2009 (pH1N1) and duck H3N2 (dkH3N2) co-infected quail generated from our previous study in embryonated chicken eggs, mammalian (MDCK) and human lung derived (A549) cells. Our study demonstrated that all of the reassortant viruses replicated efficiently in avian and mammalian cells, albeit with slightly lower titers than the parental viruses. Of note, all of the reassortant viruses showed enhanced replication in human lung derived A549 cells compared to their parental viruses. Interestingly, among the reassortant viruses tested, a reassortant virus (P(NA,NS)-DK) containing NA and NS genes derived from pH1N1 and the other genes from dkH3N2 exhibited the highest replication ability in all in vitro models, indicating a high level of gene compatibility of this reassortant virus. Our results highlight the potential role of quail as intermediate hosts for the generation of the viable reassortant viruses with ability to replicate efficiently in avian, mammalian, and particularly human lung derived cells. These findings emphasize the need for the continuous IAV surveillance in quail to prevent the risk of the emergence of the novel viable reassortant viruses.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vetmic.2016.12.027DOI Listing

Publication Analysis

Top Keywords

reassortant viruses
24
human lung
12
lung derived
12
reassortant
10
viruses
10
novel h3n1
8
h3n1 reassortant
8
reassortant influenza
8
influenza viruses
8
replication ability
8

Similar Publications

Co-Infection of Mosquitoes with Rift Valley Fever Phlebovirus Strains Results in Efficient Viral Reassortment.

Viruses

January 2025

Center of Excellence for Emerging and Zoonotic Animal Diseases, Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA.

Rift Valley fever phlebovirus (RVFV) is a zoonotic mosquito-borne pathogen endemic to sub-Saharan Africa and the Arabian Peninsula which causes Rift Valley fever in ruminant livestock and humans. Co-infection with divergent viral strains can produce reassortment among the L, S, and M segments of the RVFV genome. Reassortment events can produce novel genotypes with altered virulence, transmission dynamics, and/or mosquito host range.

View Article and Find Full Text PDF

Detection and Phylogenetic Characterization of Influenza D in Swedish Cattle.

Viruses

December 2024

Department of Microbiology, Swedish Veterinary Agency, Ulls väg 2B, 751 89 Uppsala, Sweden.

Increased evidence suggests that cattle are the primary host of Influenza D virus (IDV) and may contribute to respiratory disease in this species. The aim of this study was to detect and characterise IDV in the Swedish cattle population using archived respiratory samples. This retrospective study comprised a collection of a total 1763 samples collected between 1 January 2021 and 30 June 2024.

View Article and Find Full Text PDF

Oropouche virus (OROV) is an orthobunyavirus endemic in the Brazilian Amazon that has caused numerous outbreaks of febrile disease since its discovery in 1955. During 2024, Oropouche fever spread from the endemic regions of Brazil into non-endemic areas and other Latin American and Caribbean countries, resulting in 13,014 confirmed infections. Similarly to other orthobunyaviruses, OROV can undergo genetic reassortment events with itself as well as other viruses.

View Article and Find Full Text PDF

Novel introductions of human-origin H3N2 influenza viruses in swine, Chile.

Front Vet Sci

January 2025

Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile.

Influenza A virus (IAV) continuously threatens animal and public health globally, with swine serving as a crucial reservoir for viral reassortment and evolution. In Chile, H1N2 and H3N2 subtypes were introduced in the swine population before the H1N1 2009 pandemic, and the H1N1 was introduced from the H1N1pdm09 by successive reverse zoonotic events. Here, we report two novel introductions of IAV H3N2 human-origin in Chilean swine during 2023.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!