Background And Objective: Accurate vessel segmentation of magnetic resonance angiography (MRA) images is essential for computer-aided diagnosis of cerebrovascular diseases such as stenosis or aneurysm. The ability of a segmentation algorithm to correctly reproduce the geometry of the arterial system should be expressed quantitatively and observer-independently to ensure objectivism of the evaluation.
Methods: This paper introduces a methodology for validating vessel segmentation algorithms using a custom-designed MRA simulation framework. For this purpose, a realistic reference model of an intracranial arterial tree was developed based on a real Time-of-Flight (TOF) MRA data set. With this specific geometry blood flow was simulated and a series of TOF images was synthesized using various acquisition protocol parameters and signal-to-noise ratios. The synthesized arterial tree was then reconstructed using a level-set segmentation algorithm available in the Vascular Modeling Toolkit (VMTK). Moreover, to present versatile application of the proposed methodology, validation was also performed for two alternative techniques: a multi-scale vessel enhancement filter and the Chan-Vese variant of the level-set-based approach, as implemented in the Insight Segmentation and Registration Toolkit (ITK). The segmentation results were compared against the reference model.
Results: The accuracy in determining the vessels centerline courses was very high for each tested segmentation algorithm (mean error rate = 5.6% if using VMTK). However, the estimated radii exhibited deviations from ground truth values with mean error rates ranging from 7% up to 79%, depending on the vessel size, image acquisition and segmentation method.
Conclusions: We demonstrated the practical application of the designed MRA simulator as a reliable tool for quantitative validation of MRA image processing algorithms that provides objective, reproducible results and is observer independent.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cmpb.2016.09.020 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!