Background And Objective: Smoking is the largest preventable cause of death and diseases in the developed world, and advances in modern electronics and machine learning can help us deliver real-time intervention to smokers in novel ways. In this paper, we examine different machine learning approaches to use situational features associated with having or not having urges to smoke during a quit attempt in order to accurately classify high-urge states.
Methods: To test our machine learning approaches, specifically, Bayes, discriminant analysis and decision tree learning methods, we used a dataset collected from over 300 participants who had initiated a quit attempt. The three classification approaches are evaluated observing sensitivity, specificity, accuracy and precision.
Results: The outcome of the analysis showed that algorithms based on feature selection make it possible to obtain high classification rates with only a few features selected from the entire dataset. The classification tree method outperformed the naive Bayes and discriminant analysis methods, with an accuracy of the classifications up to 86%. These numbers suggest that machine learning may be a suitable approach to deal with smoking cessation matters, and to predict smoking urges, outlining a potential use for mobile health applications.
Conclusions: In conclusion, machine learning classifiers can help identify smoking situations, and the search for the best features and classifier parameters significantly improves the algorithms' performance. In addition, this study also supports the usefulness of new technologies in improving the effect of smoking cessation interventions, the management of time and patients by therapists, and thus the optimization of available health care resources. Future studies should focus on providing more adaptive and personalized support to people who really need it, in a minimum amount of time by developing novel expert systems capable of delivering real-time interventions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5289882 | PMC |
http://dx.doi.org/10.1016/j.cmpb.2016.09.016 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
Proximity and tactile multiresponse sensing electronic skin enriches the perception dimension, which is of great significance in promoting the intelligence of electronic skin. However, achieving real-time visualization in sensors such as proximity and tactile feedback remains a challenge. A proximity and tactile sensor with visual function is designed, which can realize optical early warning and electrical recognition when the object is near, and optical display and electrical output when the object is in contact.
View Article and Find Full Text PDFHPB (Oxford)
December 2024
Institute for Surgical Pathology, Medical Center - University of Freiburg, Germany; Core Facility for Histopathology and Digital Pathology, University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany. Electronic address:
Background: In pancreatic surgery Postoperative pancreatic fistula (POPF) represents the most dreaded complication, for which pancreatic texture is acknowledged as one of the strongest predictors. No consensual objective reference has been defined to evaluate the pancreas composition. The presented study aimed to mine histology data of the pancreatic tissue composition with AI assist and correlate it with clinic-pathological parameters derived from the RECOPANC study.
View Article and Find Full Text PDFJ Voice
January 2025
Department of Surgery, UMONS Research Institute for Health Sciences and Technology, University of Mons (UMons), Mons, Belgium; Division of Laryngology and Bronchoesophagology, Department of Otolaryngology Head Neck Surgery, EpiCURA Hospital, Baudour, Belgium; Department of Otolaryngology-Head and Neck Surgery, Foch Hospital, School of Medicine, UFR Simone Veil, Université Versailles Saint-Quentin-en-Yvelines (Paris Saclay University), Paris, France; Department of Otolaryngology, Elsan Hospital, Paris, France. Electronic address:
Background: Voice analysis has emerged as a potential biomarker for mood state detection and monitoring in bipolar disorder (BD). The systematic review aimed to summarize the evidence for voice analysis applications in BD, examining (1) the predictive validity of voice quality outcomes for mood state detection, and (2) the correlation between voice parameters and clinical symptom scales.
Methods: A PubMed, Scopus, and Cochrane Library search was carried out by two investigators for publications investigating voice quality in BD according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statements.
Trends Cogn Sci
January 2025
Department of Psychology, Biological Psychology, University of Cologne, Cologne, Germany. Electronic address:
Multi-line electronic gambling machines (EGMs) are strongly associated with problem gambling. Dopamine (DA) plays a central role in substance-use disorders, which share clinical and behavioral features with disordered gambling. The structural design features of multi-line EGMs likely lead to the elicitation of various dopaminergic effects within their nested anticipation-outcome structure.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Dermatology, the Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, China. Electronic address:
Many atopic dermatitis (AD) patients have suboptimal responses to Dupilumab therapy. This study identified key genes linked to this resistance using multi-omics approaches to benefit more patients. We selected a prospective cohort of 54 CE treated with Dupilumab from the GEO database.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!