Acidification with nitric acid improves chemical characteristics and reduces phytotoxicity of alkaline chars.

J Environ Manage

Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, 46022 Valencia, Spain. Electronic address:

Published: April 2017

Charred organic matter is recently receiving attention for its potential use as soilless growth medium. However, depending on its origin and on the manufacturing technology, it can result toxic for plants. This fact implies that a detoxifying treatment ought to be devised in order to reclaim char in this way. We have studied three materials which combine these factors: two pyrolyzed biochars, one from forest waste (BCH-FW) and another from olive mill waste (BCH-OMW), and one hydrothermally carbonized hydrochar from forest waste (HYD-FW). These materials are suspicious of phytotoxicity due to their high pH, high salinity, or presence of organic toxics. For these new materials, it is mandatory to select fast and reliable bioassays to predict their potential phytotoxicity. In order to achieve this goal water extracts of the three chars were subjected to bioassays of seed germination and bioassays of seedling growth in hydroponic conditions. The biochar from olive mill waste and the hydrochar, but not the biochar from forest waste, showed considerable phytotoxicity as seed germination and plant growth were negatively affected (e.g. BCH-OMW reduced seed germination by 80% and caused early seedling death). In order to adjust pH and electrical conductivity for plant growth, treatments of acidification and salt leaching with optimal diluted HNO solutions (0.3 N, 0.2 N, and 0.75 N for BCH-OMW, BCH-FW, and HYD-FW, respectively) as calculated from titration curves, were conducted. The acid treatment reduced electrical conductivity in BCH-OMW (from 9.2 to 4.5 dS m), pH (maximum in BCH-FW from 9.6 to 6.2) and water soluble carbonaceous compounds (maximum in HYD-FW from 5969 to 2145 mg kg) in the three chars, and increased N content (maximum in BCH-OMW from 50 to 6342 mg kg) in the three chars. Bioassays on acid-treated chars demonstrated the absence of phytotoxicity and even stimulation of seedling growth over the control (increase of 86% and 56% for BCH-FW and HYD-FW, respectively). We conclude that acidification of chars with diluted HNO is a viable technique to conform chars to standards for plant growth purposes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2017.01.026DOI Listing

Publication Analysis

Top Keywords

forest waste
12
three chars
12
seed germination
12
plant growth
12
olive mill
8
mill waste
8
seedling growth
8
electrical conductivity
8
diluted hno
8
bch-fw hyd-fw
8

Similar Publications

Recent advances in valorization of lignocellulosic waste into biochar and its functionalization for the removal of chromium ions.

Int J Biol Macromol

January 2025

Sichuan Academy of Forestry, Chengdu, Sichuan 610081, China; Ecological Restoration and Conservation on Forest and Wetland Key Laboratory of Sichuan Province, Chengdu, Sichuan 610081, China. Electronic address:

Lignocellulosic waste is a prevalent byproduct of agricultural and forestry activities which is an excellent feedstock for the preparation of biochar. This research area is of interest to the scientific community due to its potential in environmental remediation. In this regard, this review examines the latest advancements in transforming lignocellulosic waste into biochar and explores recent innovations in enhancing its functionality for chromium ion removal.

View Article and Find Full Text PDF

Mushrooms are considered as nutraceutical foods that can effectively prevent diseases such as cancer and other serious life-threatening conditions include neurodegeneration, hypertension, diabetes, and hypercholesterolemia. The , also known as the "Golden chanterelle" or "Golden girolle," is a significant wild edible ectomycorrhizal mushroom. It is renowned for its delicious, apricot-like aroma and is highly valued in various culinary traditions worldwide.

View Article and Find Full Text PDF

Waste pile substrates from Fe mining may carry potentially toxic elements (PTE). Rehabilitation efforts must maintain soil vegetation cover effectively, avoiding the dispersion of particulate matter and reducing the risk to the environment and human health. Therefore, this study aims to evaluate the pseudo-total and extractable contents, perform chemical fractionation, and assess the bioaccessibility and risk of PTE in waste piles of Fe mining in the Eastern Amazon.

View Article and Find Full Text PDF

Review on mushroom mycelium-based products and their production process: from upstream to downstream.

Bioresour Bioprocess

January 2025

Laboratory of Forest Biochemistry, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.

The global trend toward carbon neutrality and sustainability calls for collaborative efforts in both the basic and applied research sectors to utilize mushroom mycelia as environmentally friendly and sustainable materials. Fungi, along with animals and plants, are one of the major eukaryotic life forms. They have long been utilized in traditional biotechnology sectors, such as food fermentation, antibiotic production, and industrial enzyme production.

View Article and Find Full Text PDF

Reconstructing the environmental impact of mining on mountain lakes.

Sci Total Environ

January 2025

Instituto Geológico y Minero de España (CSIC), Ríos Rosas 23, ES-28003 Madrid, Spain. Electronic address:

Mountain lakes are particularly fragile ecosystems undergoing important ecological and depositional transformations associated with ongoing global change. However, the history of anthropogenic impacts on mountain lakes and their catchments is much longer, in many cases featuring millennia of summer pastoral farming. More recently, the growing demand for raw materials and energy linked to industrialization, particularly accelerated since the 19th century CE, meant a further increase in human impact on mountain areas.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!