A thermostable variant of the mesophilic xylanase A from Bacillus subtilis (BsXynA-G3_4x) contains the four mutations Gln7His, Gly13Arg, Ser22Pro, and Ser179Cys. The crystal structure of the BsXynA-G3_4x has been solved, and the local environments around each of these positions investigated by molecular dynamics (MD) simulations at 328K and 348K. The structural and MD simulation results were correlated with thermodynamic data of the wild-type enzyme, the 4 single mutants and the BsXynA-G3_4x. This analysis suggests that the overall stabilizing effect is entropic, and is consistent with solvation of charged residues and reduction of main-chain flexibility. Furthermore, increased protein-protein hydrogen bonding and hydrophobic interactions also contribute to stabilize the BsXynA-G3_4x. The study revealed that a combination of several factors is responsible for increased thermostability of the BsXynA-G3_4x; (i) introduction of backbone rigidity in regions of high flexibility, (ii) solvation effects and (iii) hydrophobic contacts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2017.01.054 | DOI Listing |
Front Microbiol
December 2024
College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, China.
Int J Biol Macromol
December 2024
State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, PR China; School of Life Science, Hubei University, Wuhan 430062, PR China. Electronic address:
Biobleaching is an eco-friendly strategy that can reduce costs and pollution in the pulp and paper industry. Herein, an effective biobleaching approach was proposed using a novel multi-enzyme complex. The multi-enzyme complex was constructed based on mini-cellulosome scaffolding protein integrated with laccase (BpLac) and xylanase (BpXyn) from Bacillus pumilus.
View Article and Find Full Text PDFMicrob Cell Fact
December 2024
Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, C3.108, Amsterdam, 1098 XH, The Netherlands.
Background: Bacillus subtilis is widely used for industrial enzyme production due to its capacity to efficiently secrete proteins. However, secretion efficiency of enzymes varies widely, and optimizing secretion is crucial to make production commercially viable. Previously, we have shown that overexpression of the xylanase XynA lowers expression of Clp protein chaperones, and that inactivation of CtsR, which regulates and represses clp transcription, increases the production of XynA.
View Article and Find Full Text PDFThe food enzyme endo-1,4-β-xylanase (4-β-d-xylan xylanohydrolase; EC 3.2.1.
View Article and Find Full Text PDFThe food enzyme endo-1,4-β-xylanase (4-β-d-xylan xylanohydrolase, EC 3.2.1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!