The aim of this study was to compare the common method of exploiting infrared spectral data in animal breeding; that is, estimating the breeding values for the traits predicted by infrared spectroscopy, and an alternative approach based on the direct use of spectral information (direct prediction, DP) to predict the estimated breeding values (EBV). Traits were pH, milk coagulation properties, contents of the main casein and whey protein fractions, cheese yield measured by micro-cheese making, lactoferrin, Ca, and fat composition. For the DP method, the number of spectral variables was reduced by principal components analysis to 8 latent traits that explained 99% of the original spectral variation. Restricted maximum likelihood was used to estimate variance components of the latent traits. (Co)variance components of the original spectral traits were obtained by back-transformation and EBV of all derived milk traits were then predicted as traits correlated with the genetic information of the spectra. The rank correlation between the EBV obtained for the infrared-predicted traits and those obtained from the DP method was variable across traits. Rank correlations ranged from 0.07 (for the content of saturated fatty acids expressed as g/100 g of fat) to 0.96 (for dry matter cheese yield, %) and, for most traits, was <0.5. This result can be explained by the nature of the principal components analysis: it does not take into account the covariance between the spectral variables and the reference traits but produces latent traits that maximize the spectral variance explained. Thus, the direct approach is more likely to be effective for traits more related to the main sources of spectral variation (i.e., protein and fat). More research is required to study spectral genetic variation and to determine the best way to choose spectral regions and the type and number of considered latent traits for potential applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3168/jds.2016-11951 | DOI Listing |
Vet Med Sci
March 2025
Faculty of Veterinary Medicine, Department of Genetics, Hatay Mustafa Kemal University, Hatay, Türkiye.
This study tested the effects of propylene glycol (PG) on the fatty acid composition of Akkaraman lambs in three different anatomical depot locations (ADLs). Twenty-four lambs were assigned to a randomized complete block design comprising three groups of 8 animals as follows: Con, 1.5%, body weight (BW) (PG1.
View Article and Find Full Text PDFJ Anim Breed Genet
January 2025
Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), CSIC, Madrid, Spain.
The advancement of epigenetics has highlighted DNA methylation as an intermediate-omic influencing gene regulation and phenotypic expression. With emerging technologies enabling the large-scale and affordable capture of methylation data, there is growing interest in integrating this information into genetic evaluation models for animal breeding. This study used methylome information from six dairy cows to simulate the methylation profile of 13,183 genotyped animals.
View Article and Find Full Text PDFFood Sci Nutr
January 2025
International Magnesium Institute, College of Resources and Environment Fujian Agriculture and Forestry University Fuzhou China.
Sweet corn ( L. ) is gaining global popularity as a staple crop and a vegetable due to its high nutritional value. However, information on grain magnesium (Mg) and calcium (Ca) status and their response to phosphorus (P) fertilization in sweet corn is still insufficient.
View Article and Find Full Text PDFAnim Reprod
January 2025
Genetics and Physiology Division, Taiwan Livestock Research Institute, Ministry of Agriculture, Tainan, Taiwan.
Ensuring boar sperm quality before insemination is crucial for maximizing field fertility and efficient pig production. The computer-assisted sperm analysis (CASA) and fluorescence probes combined with flow cytometry (FC) are commonly used techniques for evaluating sperm kinematics and functions, closely related to animal fertility. However, their high cost and complex operations make it challenging to apply them in laboratories or pig breeding farms with limited resources.
View Article and Find Full Text PDFHortic Res
January 2025
State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
Fruit firmness is an important trait for characterizing the quality and value of apple. It also serves as an indicator of fruit maturity, as it is a complex trait regulated by multiple genes. Resequencing techniques can be employed to elucidate variations in such complex fruit traits.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!