The purpose of the present study was to identify the differential proteins that synchronously change in urine and glomeruli and could be used to monitor glomerular lesions of IgA nephropathy (IgAN). The proteomes of urine and glomeruli from four IgAN patients who were graded III/IV according to the grading system of Lee et al. were compared to the urine proteomes of four healthy volunteers and the glomeruli proteomes of adjacent normal tissue from four patients with renal tumors, respectively. Western blot, enzyme-linked immunosorbent assay and immunofluorescence assay were applied to verify the results of the proteomic analysis. In the proteomic analysis of urine from IgAN patients and healthy volunteers, 714 proteins were identified, with 246 proteins identified as differential proteins. In the proteomic analysis of glomeruli from renal biopsy tissue of IgAN patients and from adjacent normal tissue of patients with renal tumors, 161 proteins were identified altogether, and 20 proteins of these were recognized as differential proteins. After comparatively analyzing the differential proteins identified in the urine and glomeruli, five synchronously changed differential proteins were found: complement C9, Ig kappa chain C region and three cytoskeleton proteins. In summary, our findings indicate that certain immunological indices in urine appear to be associated with glomerular lesions of IgAN.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1440-1681.12733 | DOI Listing |
Sci Rep
December 2024
Department of Chemistry and Biochemistry, Northern Arizona University, Flagstaff, AZ, USA.
Idiopathic pulmonary fibrosis (IPF) is a fatal disease defined by a progressive decline in lung function due to scarring and accumulation of extracellular matrix (ECM) proteins. The SOCS (Suppressor Of Cytokine Signaling) domain is a 40 amino acid conserved domain known to form a functional ubiquitin ligase complex targeting the Von Hippel Lindau (VHL) protein for proteasomal degradation. Here we show that the SOCS conserved domain operates as a molecular tool, to disrupt collagen and fibronectin fibrils in the ECM associated with fibrotic lung myofibroblasts.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Mechanical Engineering, Sejong University, Seoul, Republic of Korea.
Nonthermal plasma has been extensively utilized in various biomedical fields, including surface engineering of medical implants to enhance their biocompatibility and osseointegration. To ensure robustness and cost effectiveness for commercial viability, stable and effective plasma is required, which can be achieved by reducing gas pressure in a controlled volume. Here, we explored the impact of reduced gas pressure on plasma properties, surface characteristics of plasma-treated implants, and subsequent biological outcomes.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark.
CD163, a macrophage-specific receptor, plays a critical role in scavenging hemoglobin released during hemolysis, protecting against oxidative effects of heme iron. In the bloodstream, hemoglobin is bound by haptoglobin, leading to its immediate endocytosis by CD163. While haptoglobin's structure and function are well understood, CD163's structure and its interaction with the haptoglobin-hemoglobin complex have remained elusive.
View Article and Find Full Text PDFNat Commun
December 2024
Nanobiology Institute, Yale University, West Haven, CT, USA.
Neurotransmitters are released from synaptic vesicles with remarkable precision in response to presynaptic calcium influx but exhibit significant heterogeneity in exocytosis timing and efficacy based on the recent history of activity. This heterogeneity is critical for information transfer in the brain, yet its molecular basis remains poorly understood. Here, we employ a biochemically-defined fusion assay under physiologically relevant conditions to delineate the minimal protein machinery sufficient to account for various modes of calcium-triggered vesicle fusion dynamics.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, USA.
Pluripotent stem cells possess a unique nuclear architecture characterized by a larger nucleus and more open chromatin, which underpins their ability to self-renew and differentiate. Here, we show that the nucleolus-specific RNA helicase DDX18 is essential for maintaining the pluripotency of human embryonic stem cells. Using techniques such as Hi-C, DNA/RNA-FISH, and biomolecular condensate analysis, we demonstrate that DDX18 regulates nucleolus phase separation and nuclear organization by interacting with NPM1 in the granular nucleolar component, driven by specific nucleolar RNAs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!