The present study aimed to specify the cerebral sulci developed by cortical expansion in cynomolgus monkey fetuses. The degree of sulcal infolding was evaluated by the gyrification index (GI), which was quantified using ex vivo magnetic resonance imaging. The correlation of cortical volume with the sulcal GI was most frequent during embryonic days (EDs) 100 to 120. Interestingly, the high correlation was marked during EDs 140 to 150 in restricted primary sulci in prefrontal, parietotemporal and medial temporal regions. The present results suggest that cortical expansion is involved in gyral demarcation by sulcal infolding, followed by the sulcal infolding progression in phylogenetically-newer cortices.

Download full-text PDF

Source
http://dx.doi.org/10.1111/cga.12209DOI Listing

Publication Analysis

Top Keywords

sulcal infolding
16
cortical expansion
12
infolding progression
8
expansion cynomolgus
8
cynomolgus monkey
8
monkey fetuses
8
sulcal
5
regional difference
4
difference sulcal
4
infolding
4

Similar Publications

The present study characterized quantitatively sexual dimorphic development of gyrification by MRI-based morphometry. High spatial-resolution 3D MR images (using RARE sequence with short TR and minimum TE setting) were acquired from fixed brain of male and female ferrets at postnatal days (PDs) 4-90 using 7-tesla preclinical MRI system. The gyrification index was evaluated either throughout the cerebral cortex (global GI) or in representative primary sulci (sulcal GI).

View Article and Find Full Text PDF

The present study aimed to specify the cerebral sulci developed by cortical expansion in cynomolgus monkey fetuses. The degree of sulcal infolding was evaluated by the gyrification index (GI), which was quantified using ex vivo magnetic resonance imaging. The correlation of cortical volume with the sulcal GI was most frequent during embryonic days (EDs) 100 to 120.

View Article and Find Full Text PDF

The present study quantitatively assessed sexual dimorphism of cortical convolution and sulcal morphology in young adult ferrets by MRI-based sulcal surface morphometry. Ex vivo T1-weighted (short TR/TE) MRI of the ferret cerebrum was acquired with high spatial resolution at 7-tesla. The degree of cortical convolution, evaluated quantitatively based on 3D MRI data by sulcation index (SI), was significantly greater in males (0.

View Article and Find Full Text PDF

Fetal sulcation and gyrification in common marmosets (Callithrix jacchus) obtained by ex vivo magnetic resonance imaging.

Neuroscience

January 2014

Department of Physiology, Keio University School of Medicine, Tokyo, Japan; RIKEN Keio University Joint Research Laboratory, RIKEN Brain Science Institute, Wako, Japan. Electronic address:

The present study characterized fetal sulcation patterns and gyrification in the cerebrum of the New World monkey group, common marmosets, using a 3D T2-weighted high-resolution anatomical magnetic resonance imaging (MRI) sequence from the fixed brain at 7-tesla ex vivo. Fetal sulcation in the marmoset cerebrum began to indent the lateral fissure and hippocampal sulcus in gestational week (GW) 12, and then the following sulci emerged: the callosal and calcarine sulci on GW 15; the superior temporal sulcus on GW 17; and the circular and occipitotemporal sulci on GW 18. The degree of cortical convolution was evaluated quantitatively based on 2D MRI slices by the gyrification index (GI) and based on 3D MRI data by sulcation index (SI).

View Article and Find Full Text PDF

Cynomolgus monkey (Macaca fascicularis) is a popular laboratory primate belonging to Old World monkeys, which are the group most closely related to humans except for the apes. This paper summarizes a series of our studies regarding the development of cerebral sulci and gyri in this primate, and the stated possibility of evaluation of the sulcal development for assessing the developmental toxicity testing. The cerebrum of cynomolgus monkeys experienced a regular sequence of emergence of sulci and gyri on gross observation while such timetables corresponded to those obtained by magnetic resonance imaging (MRI) with a lag time of 10-30 days.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!