Metastatic invasion is the major cause of cancer-related deaths. In this study, we introduce two-pore channels (TPC), a recently described class of NAADP- and PI(3,5)P2-sensitive Ca-permeable cation channels in the endolysosomal system of cells, as candidate targets for the treatment of invasive cancers. Inhibition of the channel abrogated migration of metastatic cancer cells Silencing or pharmacologic inhibition of the two-pore channel TPC2 reduced lung metastasis of mammary mouse cancer cells. Disrupting TPC function halted trafficking of β1-integrin, leading to its accumulation in EEA1-positive early endosomes. As a consequence, invasive cancer cells were no longer able to form leading edges, which are required for adequate migration. Our findings link TPC to cancer cell migration and provide a preclinical proof of concept for their candidacy as targets to treat metastatic cancers. .

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-16-0852DOI Listing

Publication Analysis

Top Keywords

cancer cells
16
two-pore channel
8
invasive cancer
8
cancer
5
cells
5
channel function
4
function crucial
4
migration
4
crucial migration
4
migration invasive
4

Similar Publications

A potential two-way passage of cells and substances between the brain and skull bone marrow may open for new insights into neurological disease. The arachnoid membrane was traditionally considered to restrict cells and larger molecules in CSF from entering the dura and bone marrow directly. However, new data on exchange between brain and skull bone marrow have recently emerged.

View Article and Find Full Text PDF

Emerging insights into the impact of systemic metabolic changes on tumor-immune interactions.

Cell Rep

January 2025

Ragon Institute of Mass General, MIT, and Harvard, 600 Main Street, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA. Electronic address:

Tumors are inherently embedded in systemic physiology, which contributes metabolites, signaling molecules, and immune cells to the tumor microenvironment. As a result, any systemic change to host metabolism can impact tumor progression and response to therapy. In this review, we explore how factors that affect metabolic health, such as diet, obesity, and exercise, influence the interplay between cancer and immune cells that reside within tumors.

View Article and Find Full Text PDF

Protocol for assessing and visualizing cell microaggregate formation in whole blood by imaging flow cytometry.

STAR Protoc

January 2025

Heinz-Nixdorf-Chair of Biomedical Electronics, TranslaTUM, School of Computation, Information and Technology, TUM, Germany; Munich Institute of Biomedical Engineering, TUM, Germany. Electronic address:

Blood cell aggregates are clinically useful biomarkers in a number of medical disorders. This protocol provides accurate and quantitative analysis of cell aggregates using a small volume of whole blood and imaging flow cytometry. We describe steps for sample collection, staining, and measurement.

View Article and Find Full Text PDF

Objectives: Acute T-cell lymphoblastic leukemia (T-ALL) is a severe hematologic malignancy with limited treatment options and poor long-term survival. This study explores the role of IKZF1 in regulating BCL-2 expression in T-ALL.

Methods: CUT&Tag and CUT&Run assays were employed to assess IKZF1 binding to the BCL-2 promoter.

View Article and Find Full Text PDF

Cervical cancer is a common tumor in women and one of the common causes of cancer death in women. Due to the aggressive and non-specific nature of traditional chemotherapy, there is a growing need for new treatment modalities. Currently, tumor immunotherapy is increasingly garnering attention as a disruptive treatment approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!