Migraine is a disabling brain disorder involving abnormal trigeminovascular activation and sensitization. Fasting or skipping meals is considered a migraine trigger and altered fasting glucose and insulin levels have been observed in migraineurs. Therefore peptides involved in appetite and glucose regulation including insulin, glucagon and leptin could potentially influence migraine neurobiology. We aimed to determine the effect of insulin (10U·kg), glucagon (100μg·200μl) and leptin (0.3, 1 and 3mg·kg) signaling on trigeminovascular nociceptive processing at the level of the trigeminocervical-complex and hypothalamus. Male rats were anesthetized and prepared for craniovascular stimulation. In vivo electrophysiology was used to determine changes in trigeminocervical neuronal responses to dural electrical stimulation, and phosphorylated extracellular signal-regulated kinases 1 and 2 (pERK1/2) immunohistochemistry to determine trigeminocervical and hypothalamic neural activity; both in response to intravenous administration of insulin, glucagon, leptin or vehicle control in combination with blood glucose analysis. Blood glucose levels were significantly decreased by insulin (p<0.001) and leptin (p<0.01) whereas glucagon had the opposite effect (p<0.001). Dural-evoked neuronal firing in the trigeminocervical-complex was significantly inhibited by insulin (p<0.001), glucagon (p<0.05) and leptin (p<0.01). Trigeminocervical-complex pERK1/2 cell expression was significantly decreased by insulin and leptin (both p<0.001), and increased by glucagon (p<0.001), when compared to vehicle control. However, only leptin affected pERK1/2 expression in the hypothalamus, significantly decreasing pERK1/2 immunoreactive cell expression in the arcuate nucleus (p<0.05). These findings demonstrate that insulin, glucagon and leptin can alter the transmission of trigeminal nociceptive inputs. A potential neurobiological link between migraine and impaired metabolic homeostasis may occur through disturbed glucose regulation and a transient hypothalamic dysfunction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5356993 | PMC |
http://dx.doi.org/10.1016/j.nbd.2017.01.005 | DOI Listing |
J Endocrinol
January 2025
N Inagaki, Department of Diabetes, Endocrinology and Nutrition, Kyoto University, Kyoto, Japan.
Glucagon-like peptide 1 (GLP-1) receptor agonists (GLP-1 RAs) are widely used as antidiabetic and anti-obesity agents. Although conventional GLP-1 RAs such as liraglutide and semaglutide are acylated with fatty acids to delay their degradation by dipeptidylpeptidase-4 (DPP-4), the manufacturing process is challenging. We previously developed selectively lipidated GLP-1 peptides at their only tryptophan residue (peptide A having one 8-amino-3,6-dioxaoctanoic acid (miniPEG) linker and peptide B having three miniPEG linkers).
View Article and Find Full Text PDFDiabetes Metab Syndr Obes
January 2025
Department of Diabetes, Metabolism and Endocrinology, Toho University Graduate School of Medicine, Tokyo, Japan.
Purpose: Imeglimin is a novel oral antidiabetic agent that improves glucose tolerance. This study aimed to investigate the efficacy of combining imeglimin with dipeptidyl peptidase-4 inhibitor (DPP-4i), the most frequently prescribed first-line treatment for patients with type 2 diabetes (T2D) in Japan, to improve glycemic control.
Patients And Methods: Eleven patients with T2D treated with DPP-4i alone (6.
Endocrinol Metab (Seoul)
January 2025
Division of Endocrinology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.
Background: Achieving optimal glucose control is essential in the management of type 2 diabetes (T2D). This study aimed to evaluate the effectiveness and safety of oral quadruple combination therapy for the treatment of T2D.
Methods: This meta-analysis reviewed original research on oral quadruple combination therapy for T2D, including both experimental and observational studies with a minimum duration of 12 weeks.
J Basic Clin Physiol Pharmacol
January 2025
Pharmacology, MGM Medical College and Hospital, MGM Institute of Health Sciences, Nerul, Navi Mumbai, Maharashtra, India.
Obstructive Sleep Apnea (OSA) is a prevalent sleep disorder marked by repeated episodes of partial or complete upper airway obstruction during sleep, which leads to intermittent hypoxia and fragmented sleep. These disruptions negatively impact cardiovascular health, metabolic function, and overall quality of life. Obesity is a major modifiable risk factor for OSA, as it contributes to both anatomical and physiological mechanisms that increase the likelihood of airway collapse during sleep.
View Article and Find Full Text PDFActa Physiol (Oxf)
February 2025
Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.
Aim: Somatostatin from pancreatic δ-cells is a paracrine regulator of insulin and glucagon secretion, but the release kinetics and whether secretion is altered in diabetes is unclear. This study aimed to improve understanding of somatostatin secretion by developing a tool for real-time detection of somatostatin release from individual pancreatic islets.
Methods: Reporter cells responding to somatostatin with cytoplasmic Ca concentration ([Ca]) changes were generated by co-expressing somatostatin receptor SSTR2, the G-protein Gα15 and a fluorescent Ca sensor in HeLa cells.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!