Negative feedback regulation between microRNA let-7g and LOX-1 mediated hypoxia-induced PASMCs proliferation.

Biochem Biophys Res Commun

Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Central South University, Changsha, Hunan, 410078, China. Electronic address:

Published: July 2017

Background: Pulmonary hypertension (PH) is a proliferative disorder associated with enhanced proliferation and suppressed apoptosis of pulmonary artery smooth muscle cells (PASMCs). Our lately study demonstrated that let-7g inhibited hypoxia-induced proliferation of PASMCs via repressing c-myc-Bmi-1-p16 signaling pathway. However, the upstream of let-7g has not yet been fully defined. Previous studies have shown that LOX-1, a target of let-7g, could also regulate the expression of let-7g in human aortic endothelial cells. In this present study, we aimed to investigate whether there is a negative feedback regulation between microRNA let-7g and LOX-1 in hypoxia-induced proliferation of PASMCs.

Methods: SD Rats were exposed to hypoxia (10% O, 3 weeks) to induce PH. HE staining was used to evaluate pulmonary artery remodeling. in situ hybridization and immunohistochemistry were performed to assess the expression and distribution of let-7g and LOX-1, respectively. MTS, EDU and flow cytometry were performed to evaluate PASMCs proliferation. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting were conducted to assess the expression of let-7g, LOX-1, calpain-1,-2,-4, and OCT-1.

Results: The expression of let-7g was significantly down-regulated in pulmonary arteries of hypoxia-induced PH rats accompanied by pulmonary vascular remodeling, whereas let-7g mimic inhibited hypoxia-induced proliferation of PASMCs and up-regulation of LOX-1 expression. LOX-1 blocking reversed hypoxia-induced down-regulation of let-7g expression. Calpains, protein kinase C and OCT-1 were involved in negative feedback regulation between let-7g and LOX-1.

Conclusion: Negative feedback regulation between let-7g and LOX-1 mediated hypoxia-induced proliferation of in PASMCs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2017.01.073DOI Listing

Publication Analysis

Top Keywords

let-7g lox-1
20
negative feedback
16
feedback regulation
16
hypoxia-induced proliferation
16
let-7g
13
proliferation pasmcs
12
expression let-7g
12
regulation microrna
8
microrna let-7g
8
lox-1
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!