A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Performance of Predictive Equations Specifically Developed to Estimate Resting Energy Expenditure in Ventilated Critically Ill Children. | LitMetric

Objective: To determine, based on indirect calorimetry measurements, the biases of predictive equations specifically developed recently for estimating resting energy expenditure (REE) in ventilated critically ill children, or developed for healthy populations but used in critically ill children.

Study Design: A secondary analysis study was performed using our data on REE measured in a previous prospective study on protein and energy needs in pediatric intensive care unit. We included 75 ventilated critically ill children (median age, 21 months) in whom 407 indirect calorimetry measurements were performed. Fifteen predictive equations were used to estimate REE: the equations of White, Meyer, Mehta, Schofield, Henry, the World Health Organization, Fleisch, and Harris-Benedict and the tables of Talbot. Their differential and proportional biases (with 95% CIs) were computed and the bias plotted in graphs. The Bland-Altman method was also used.

Results: Most equations underestimated and overestimated REE between 200 and 1000 kcal/day. The equations of Mehta, Schofield, and Henry and the tables of Talbot had a bias ≤10%, but the 95% CI was large and contained values by far beyond ±10% for low REE values. Other specific equations for critically ill children had even wider biases.

Conclusions: In ventilated critically ill children, none of the predictive equations tested met the performance criteria for the entire range of REE between 200 and 1000 kcal/day. Even the equations with the smallest bias may entail a risk of underfeeding or overfeeding, especially in the youngest children. Indirect calorimetry measurement must be preferred.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpeds.2016.12.063DOI Listing

Publication Analysis

Top Keywords

critically ill
24
ill children
20
predictive equations
16
ventilated critically
16
indirect calorimetry
12
equations
9
equations developed
8
resting energy
8
energy expenditure
8
calorimetry measurements
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!