Assessment of central venous physiology of Fontan circulation using peripheral venous pressure.

J Thorac Cardiovasc Surg

Department of Pediatric Cardiology, Saitama Medical Center, Saitama Medical University, Saitama, Japan. Electronic address:

Published: April 2017

Objective: Elevated central venous pressure is a major cause of morbidity and mortality after the Fontan operation. The difference between mean circulatory filling pressure and central venous pressure, a driving force of venous return, is important in determining dynamic changes in central venous pressure in response to changes in ventricular properties or loading conditions. Thus, noninvasive central venous pressure and mean circulatory filling pressure estimation may contribute to optimal management in patients undergoing the Fontan operation. We tested the hypothesis that central venous pressure and mean circulatory filling pressure in those undergoing the Fontan operation can be simply estimated using peripheral venous pressure and arm equilibrium pressure, respectively.

Methods: This study included 30 patients after the Fontan operation who underwent cardiac catheterization (median 8.6, 3.4-42 years). Peripheral venous pressure was measured at the peripheral vein in the upper extremities. Mean circulatory filling pressure was calculated by the changes of arterial pressure and central venous pressure during the Valsalva maneuver. Arm equilibrium pressure was measured as equilibrated venous pressure by rapidly inflating a blood pressure cuff to 200 mm Hg.

Results: Central venous pressure and peripheral venous pressure were highly correlated (central venous pressure = 1.6 + 0.68 × peripheral venous pressure, R = 0.86, P < .0001). Stepwise multivariable regression analysis showed that only peripheral venous pressure was a significant determinant of central venous pressure. Central venous pressure was accurately estimated using regression after volume loading by contrast injection (R = 0.82, P < .0001). In addition, arm equilibrium pressure measurements were highly reproducible and robustly reflected invasively measured mean circulatory filling pressure (mean circulatory filling pressure = 9.1 + 0.63 × arm equilibrium pressure, R = 0.88, P < .0001).

Conclusions: Central venous pressure and mean circulatory filling pressure can be noninvasively estimated by peripheral venous pressure and arm equilibrium pressure, respectively. This should help clarify unidentified Fontan pathophysiology and the mechanisms of Fontan failure progression, thereby helping construct effective tailor-made approaches to prevent Fontan failure.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtcvs.2016.11.061DOI Listing

Publication Analysis

Top Keywords

venous pressure
52
central venous
36
pressure
21
peripheral venous
20
venous
16
fontan operation
16
circulatory filling
16
filling pressure
16
central
8
pressure central
8

Similar Publications

Cardiac return assist blanket (CRAB) safely increases central venous pressure.

J Int Med Res

January 2025

Institute for Health Research, the University of Notre Dame Australia, Department of Research, Sir Charles Gairdner Hospital, Nedlands, Australia.

Objective: The cardiac return assist blanket (CRAB) has been designed to increase central venous pressure (CVP) to manage severe hypotension associated with anaphylaxis. This interventional study aimed to identify the relationship between CRAB pressure and CVP. CRAB pressure was also compared with the change in CVP associated with a straight leg raise (SLR), the Trendelenburg position, and 1 L of compound sodium lactate.

View Article and Find Full Text PDF

In patients with acute brain injury (ABI), optimizing cerebral perfusion parameters relies on multimodal monitoring. This include data from systemic monitoring-mean arterial pressure (MAP), arterial carbon dioxide tension (PaCO), arterial oxygen saturation (SaO), hemoglobin levels (Hb), and temperature-as well as neurological monitoring-intracranial pressure (ICP), cerebral perfusion pressure (CPP), and transcranial Doppler (TCD) velocities. We hypothesized that these parameters alone were not sufficient to assess the risk of cerebral ischemia.

View Article and Find Full Text PDF

Background: Venous waveform analysis is an emerging technique to estimate intravascular fluid status by fast Fourier transform deconvolution. Fluid status has been shown proportional to , the amplitude of the fundamental frequency of the waveform's cardiac wave upon deconvolution. Using a porcine model of distributive shock and fluid resuscitation, we sought to determine the influence of norepinephrine on of the central venous waveform.

View Article and Find Full Text PDF

Background: Pulmonary arterial hypertension (PAH) is characterized by elevated pulmonary artery pressure and vascular resistance, leading to systemic venous hypertension and potential right heart failure. These elevated pressures can extend to ocular veins, resulting in complications such as central retinal vein occlusion (CRVO). This case report highlights a rare instance of CRVO combined with cilioretinal artery occlusion (CilRAO), an uncommon ocular manifestation associated with PAH.

View Article and Find Full Text PDF

Carotid body tumors (CBTs), rare neuroendocrine neoplasms near the carotid bifurcation, are mostly asymptomatic but may cause discomfort and autonomic dysfunction. Computed tomography angiography (CTA) is used for diagnosis, eliminating the need for a biopsy to avoid the risk of hemorrhage. Surgical excision is the preferred treatment, while radiotherapy is an option when surgery is impractical.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!