Reduced-order model based active disturbance rejection control of hydraulic servo system with singular value perturbation theory.

ISA Trans

School of Mechanical Engineering/Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China.

Published: March 2017

Hydraulic servomechanism is the typical mechanical/hydraulic double-dynamics coupling system with the high stiffness control and mismatched uncertainties input problems, which hinder direct applications of many advanced control approaches in the hydraulic servo fields. In this paper, by introducing the singular value perturbation theory, the original double-dynamics coupling model of the hydraulic servomechanism was reduced to a integral chain system. So that, the popular ADRC (active disturbance rejection control) technology could be directly applied to the reduced system. In addition, the high stiffness control and mismatched uncertainties input problems are avoided. The validity of the simplified model is analyzed and proven theoretically. The standard linear ADRC algorithm is then developed based on the obtained reduced-order model. Extensive comparative co-simulations and experiments are carried out to illustrate the effectiveness of the proposed method.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.isatra.2017.01.009DOI Listing

Publication Analysis

Top Keywords

reduced-order model
8
active disturbance
8
disturbance rejection
8
rejection control
8
hydraulic servo
8
singular perturbation
8
perturbation theory
8
hydraulic servomechanism
8
double-dynamics coupling
8
high stiffness
8

Similar Publications

Finite element-based nonlinear dynamic optimization of nanomechanical resonators.

Microsyst Nanoeng

January 2025

Faculty of Mechanical Engineering, Department of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, The Netherlands.

Nonlinear dynamic simulations of mechanical resonators have been facilitated by the advent of computational techniques that generate nonlinear reduced order models (ROMs) using the finite element (FE) method. However, designing devices with specific nonlinear characteristics remains inefficient since it requires manual adjustment of the design parameters and can result in suboptimal designs. Here, we integrate an FE-based nonlinear ROM technique with a derivative-free optimization algorithm to enable the design of nonlinear mechanical resonators.

View Article and Find Full Text PDF

Objective: Inclusion of individualised electrical conductivities of head tissues is crucial for the accuracy of electrical source imaging techniques based on electro/magnetoencephalography and the efficacy of transcranial electrical stimulation. Parametric electrical impedance tomography (pEIT) is a method to cheaply and non-invasively estimate them using electrode arrays on the scalp to apply currents and measure the resulting potential distribution. Conductivities are then estimated by iteratively fitting a forward model to the measurements, incurring a prohibitive computational cost that is generally lowered at the expense of accuracy.

View Article and Find Full Text PDF

This paper addresses a non-interacting torque control strategy to decouple the d- and q-axis dynamics of a permanent magnet synchronous machine (PMSM). The maximum torque per ampere (MTPA) method is used to determine the reference currents for the desired torque. To realize the noninteracting control, knowledge concerning the inductances L and L of the electrical machine is necessary.

View Article and Find Full Text PDF

This work introduces a novel methodology for identifying critical sensor locations and detecting defects in structural components. Initially, a hybrid method is proposed to determine optimal sensor placements by integrating results from both the discrete empirical interpolation method (DEIM) and the random permutation features importance technique (PI). Subsequently, the identified sensors are utilized in a novel defect detection approach, leveraging a semi-intrusive reduced order modeling and genetic search algorithm for fast and reliable defect detection.

View Article and Find Full Text PDF

Introducing pulsatility in LVADs is known to reduce complications such as stagnation and thrombosis, but it is an ongoing topic of research on what the optimal form is. We present a framework consisting of parametrized full-order simulations, reduced-order models, and sensitivity analysis to systematically quantify the effects of parametrized pulsatility on washout. As a sample problem, we study the washout in an idealized 2D left ventricle and a parametrized sinusoidal LVAD flow rate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!