The solid state photolysis of sodium, silver and thallium hyponitrite (MNO, M=Na, Ag, Tl) salts and a binuclear complex of cobalt bridged by hyponitrite ([Co(NH)-N(O)-NO-Co(NH)]) were studied by irradiation with visible and UV light in the electronic absorption region. The UV-visible spectra for free hyponitrite ion and binuclear complex of cobalt were interpreted in terms of Density Functional Theory calculations in order to explain photolysis behavior. The photolysis of each compound depends selectively on the irradiation wavelength. Irradiation with 340-460nm light and with the 488nm laser line generates photolysis only in silver and thallium hyponitrite salts, while 253.7nm light photolyzed all the studied compounds. Infrared spectroscopy was used to follow the photolysis process and to identify the generated products. Remarkably, gaseous NO was detected after photolysis in the infrared spectra of sodium, silver, and thallium hyponitrite KBr pellets. The spectra for [Co(NH)-N(O)-NO-Co(NH)] suggest that one cobalt ion remains bonded to NO from which the generation of a [(NH)CoNNO] complex is inferred. Density Functional Theory (DFT) based calculations confirm the stability of this last complex and provide the theoretical data which are used in the interpretation of the electronic spectra of the hyponitrite ion and the cobalt binuclear complex and thus in the elucidation of their photolysis behavior. Carbonate ion is also detected after photolysis in all studied compounds, presumably due to the reaction of atmospheric CO with the microcrystal surface reaction products. Kinetic measurements for the photolysis of the binuclear complex suggest a first order law for the intensity decay of the hyponitrite IR bands and for the intensity increase in the NO generation. Predicted and experimental data are in very good agreement.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2017.01.003 | DOI Listing |
Dalton Trans
December 2024
Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Jiangwan Campus, Fudan University, Shanghai 200438, China.
The phosphaguanidinate rare-earth-metal bis(aminobenzyl) complexes [(PhP)C(NCHPr-2,6)]Ln(CHCH NMe-) (Ln = Y(1-Y) and Lu(1-Lu)) were synthesized by the protonolysis of (PhP)[C(NHR)(NR)] (R = 2,6-(Pr)CH) with Ln(CHCHNMe-) (Ln = Y and Lu). Interestingly, the ring-opening rearrangement product [-MeNCHCHC(NCHPr-2,6)]Lu(CHCHNMe-)[O(CH)PPh] (2) was obtained when the acid-base reaction was carried out in THF solution at 60 °C for 36 h. Additionally, the trinuclear homometallic yttrium multimethyl/methylidene complex {[(PhP)C(NCHPr-2,6)]Y(μ-Me)}(μ-Me)(μ-CH) (3) was synthesized by the treatment of 1-Y with AlMe (2 equiv.
View Article and Find Full Text PDFWater Res
December 2024
State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution & School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China.
Understanding the competition for adsorption between arsenate and other common oxyanions at mineral-water interfaces is critical for enhancing arsenate retention in the subsurface environment and mitigating exposure risks. This study investigated the competitive adsorption between arsenate and phosphate on hematite facets using batch experiments, together with in-situ infrared spectroscopy, two-dimensional correlation spectroscopy (2D-COS), and ab initio molecular dynamic (AIMD) simulations. This study's findings revealed that hematite exhibited notable selectivity for arsenate over phosphate in both adsorption capacity and rate, with selectivity significantly influenced by the exposed facets of the hematite and reaction concentrations.
View Article and Find Full Text PDFInorg Chem
December 2024
Contribution from the Department of Chemistry, University of California, Davis, California 95616, United States.
Five new crystalline gold(I) complexes β-Au(μ-dppm)Br·2CHCl (), [Au(μ- dppm)Br]Br·2CHCl (), [Au(μ-dppm)Br](PF) (), [Au(μ-dppm)Cl](BPh)·3CHCl () and [Au(μ-dppm)]Cl(AsF)·2CHCl () (where dppm is bis(diphenylphosphino)methane) have been prepared and structurally characterized by single crystal X-ray diffraction. Colorless β-Au(μ-dppm)Br·2CHCl () has centrosymmetric structure with two three-coordinate gold(I) ions held in close proximity by the dppm ligands. Crystals of [Au(μ- dppm)Br]Br·2CHCl (), [Au(μ-dppm)Br](PF) (), and [Au(μ-dppm)Cl](BPh)·3CHCl () have a cation with an unusual arrangement that binds a two-coordinate gold(I) ion to a three-coordinate gold(I) ion through an aurophilic interaction.
View Article and Find Full Text PDFInorg Chem
December 2024
Univ. Grenoble Alpes, CNRS, DCM, Grenoble 38000, France.
We report the synthesis and characterization of two chiral binuclear iridium(III) complexes ( and ) prepared from enantiopure building blocks [μ-Cl(Δ-Ir(C^N))] and [μ-Cl(Λ-Ir(C^N))]. These building blocks have been obtained by chiral preparative high-performance liquid chromatography of the neutral iridium(III) complex (piv = 2,2,6,6-tetramethylheptane-3,5-dionate) followed by selective degradation of the ancillary ligand. For comparison purposes, we also synthesized a monomer () and a dimer (, mixture).
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.
The 4-electron oxygen reduction reaction (ORR) under alkaline conditions is central to the development of non-noble metal-based hydrogen fuel cell technologies. However, the kinetics of ORR are constrained by scaling relations, where the adsorption free energy of *OOH is intrinsically linked to that of *OH with a nearly constant difference larger than the optimal value. In this study, a well-defined binuclear Co complex was synthesized and adsorbed onto carbon black, serving as a model dual-atom catalyst.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!