Carbon-Nanodot Solar Cells from Renewable Precursors.

ChemSusChem

Materials Research Institute, Queen Mary University of London, Mile End Road, E14NS, London, UK.

Published: March 2017

It has recently been shown that waste biomass can be converted into a wide range of functional materials, including those with desirable optical and electronic properties, offering the opportunity to find new uses for these renewable resources. Photovoltaics is one area in which finding the combination of abundant, low-cost and non-toxic materials with the necessary functionality can be challenging. In this paper the performance of carbon nanodots derived from a wide range of biomaterials obtained from different biomass sources as sensitisers for TiO -based nanostructured solar cells was compared; polysaccharides (chitosan and chitin), monosaccharide (d-glucose), amino acids (l-arginine and l-cysteine) and raw lobster shells were used to produce carbon nanodots through hydrothermal carbonisation. The highest solar power conversion efficiency (PCE) of 0.36 % was obtained by using l-arginine carbon nanodots as sensitisers, whereas lobster shells, as a model source of chitin from actual food waste, showed a PCE of 0.22 %. By comparing this wide range of materials, the performance of the solar cells was correlated with the materials characteristics by carefully investigating the structural and optical properties of each family of carbon nanodots, and it was shown that the combination of amine and carboxylic acid functionalisation is particularly beneficial for the solar-cell performance.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cssc.201601741DOI Listing

Publication Analysis

Top Keywords

carbon nanodots
16
solar cells
12
wide range
12
lobster shells
8
carbon-nanodot solar
4
cells renewable
4
renewable precursors
4
precursors waste
4
waste biomass
4
biomass converted
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!