Purpose: The aim of this study was to evaluate the relevance of the three-dimensional (3D) structure of breast microcalcifications (MC) as a predictor of malignancy using highly resolved micro-computed tomography (micro-CT) datasets of biopsy samples.
Material And Methods: The study included 28 women with suspicious MC in their mammogram undergoing vacuum-assisted biopsy. Directly after the intervention, the specimens were scanned in a micro-CT with an isometric spatial resolution of 9 μm. Datasets were analysed regarding the number, volume and morphology of suspicious non-monomorphic MC (fl-fine linear, fp-fine pleomorphic, ch-coarse heterogeneous) and the structure model index (SMI). Histological evaluation was performed according to the B-classification: normal tissue or benign (group A: B1, B2), unclear malignant potential or suspicious of malignancy (group B: B3, B4) and malignant lesions (group C: B5).
Results: In all groups, suspicious non-monomorphic MC were found: group A exhibited fp MC in 38.5% of samples, no fl/ch; group B: fl 14.3%, fp 28.6%, ch 14.3%; group C always had at least one type of suspicious non-monomorphic MC (fl (57.1%) or fp (57.1%)) in each sample. The different histologic groups showed a similar mean SMI (benign: 2.97 ± 0.31, malignant: 3.02 ± 0.10, unclear: 2.90 ± 0.28). Between the three groups, no significant differences were found regarding number, volume or SMI value of MC.
Conclusion: 3D structure based on the SMI of MC analysed with highest spatial resolution is not significantly associated with the B-classification of breast lesions. Thus, magnification views of MC may be omitted in the analysis of MC detected in mammograms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5249054 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0169349 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!