With the rapid increase in the number of blast induced traumatic brain injuries and associated neuropsychological consequences in veterans returning from the operations in Iraq and Afghanistan, the need to better understand the neuropathological sequelae following exposure to an open field blast exposure is still critical. Although a large body of experimental studies have attempted to address these pathological changes using shock tube models of blast injury, studies directed at understanding changes in a gyrencephalic brain exposed to a true open field blast are limited and thus forms the focus of this study. Anesthetized, male Yucatan swine were subjected to forward facing medium blast overpressure (peak side on overpressure 224-332 kPa; n = 7) or high blast overpressure (peak side on overpressure 350-403 kPa; n = 5) by detonating 3.6 kg of composition-4 charge. Sham animals (n = 5) were subjected to all the conditions without blast exposure. After a 3-day survival period, the brain was harvested and sections from the frontal lobes were processed for histological assessment of neuronal injury and glial reactivity changes. Significant neuronal injury in the form of beta amyloid precursor protein immunoreactive zones in the gray and white matter was observed in the frontal lobe sections from both the blast exposure groups. A significant increase in the number of astrocytes and microglia was also observed in the blast exposed sections compared to sham sections. We postulate that the observed acute injury changes may progress to chronic periods after blast and may contribute to short and long-term neuronal degeneration and glial mediated inflammation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5249202PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0169239PLOS

Publication Analysis

Top Keywords

blast exposure
16
neuronal injury
12
open field
12
field blast
12
blast
11
injury glial
8
frontal lobe
8
increase number
8
blast overpressure
8
overpressure peak
8

Similar Publications

Background: Exposures to hazardous noise causes irreversible injury to the structures of the inner ear, leading to changes in hearing and balance function with strong links to age-related cognitive impairment. While the role of noise-induced hearing loss in long-term health consequences, such as progression or development of Alzheimer's Disease (AD) has been suggested, the underlying mechanisms and behavioral and cognitive outcomes or therapeutic solutions to mitigate these changes remain understudied. This study aimed to characterize the association between blast exposure, hearing loss, and the progression of AD pathology, and determine the underlying mechanisms.

View Article and Find Full Text PDF

Background: Stressors occurring over the lifespan (i.e., lifetime stressor exposure) are hypothesized to contribute to greater risk of cognitive decline and dementia.

View Article and Find Full Text PDF
Article Synopsis
  • Recent autopsy studies show that interface astroglial scarring (IAS) can occur at the gray-white matter junction in military personnel who experience repeated blast brain injuries.
  • There is currently no neuroimaging test available to detect IAS, making it difficult to diagnose and treat these injuries.
  • In a study of 27 U.S. Special Operations Forces personnel, five individuals (18.5%) showed elevated neuroinflammation signals at the gray-white matter interface compared to healthy controls, suggesting that TSPO PET scans may help identify repeated blast brain injury.
View Article and Find Full Text PDF

Primary blast exposure is a predominant cause of mild traumatic brain injury (mTBI) among veterans and active-duty military personnel, and affected individuals may develop long-lasting behavioral disturbances that interfere with quality of life. Our prior research with the "Missouri Blast" model demonstrated behavioral changes relevant to deficits in cognitive and affective domains after exposure to low-intensity blast (LIB). In this study, behavioral evaluations were extended to 3 months post-LIB injury using multifaceted conventional and advanced behavioral paradigms.

View Article and Find Full Text PDF

Purpose: Exposure to traumatic events may lead to the development of Acute Stress Disorder (ASD) within the first month post-trauma in some individuals, while others may not exhibit ASD symptoms. ASD was introduced as a potential early indicator to identify those at higher risk of developing Posttraumatic Stress Disorder (PTSD), however, PTSD can occur in some individuals even without prior ASD. Assessing ASD post-trauma can assist in identifying those who would most benefit from intervention to prevent later PTSD, yet the predictive power of ASD varies across studies, with intensity of ASD symptoms and subthreshold PTSD often less considered.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!