This paper presents a new fault detection system in hypnotic sensors used for general anesthesia during surgery. Drug infusion during surgery is based on information received from patient monitoring devices; accordingly, faults in sensor devices can put patient safety at risk. Our research offers a solution to cope with these undesirable scenarios. We focus on the anesthesia process using intravenous propofol as the hypnotic drug and employing a Bispectral Index (BIS) monitor to estimate the patient's unconsciousness level. The method developed identifies BIS episodes affected by disturbances during surgery with null clinical value. Thus, the clinician-or the automatic controller-will not take those measures into account to calculate the drug dose. Our method compares the measured BIS signal with expected behavior predicted by the propofol dose provider and the electromyogram (EMG) signal. For the prediction of the BIS signal, a model based on a hybrid intelligent system architecture has been created. The model uses clustering combined with regression techniques. To validate its accuracy, a dataset taken during surgeries with general anesthesia was used. The proposed fault detection method for BIS sensor measures has also been verified using data from real cases. The obtained results prove the method's effectiveness.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5298752PMC
http://dx.doi.org/10.3390/s17010179DOI Listing

Publication Analysis

Top Keywords

fault detection
12
hybrid intelligent
8
intelligent system
8
bis sensor
8
general anesthesia
8
bis signal
8
bis
6
system perform
4
perform fault
4
detection bis
4

Similar Publications

Multivariate time series anomaly detection (MTSAD) can effectively identify and analyze anomalous behavior in complex systems, which is particularly important in fields such as financial monitoring, industrial equipment fault detection, and cybersecurity. MTSAD requires simultaneously analyze temporal dependencies and inter-variable relationships have prompted researchers to develop specialized deep learning models to detect anomalous patterns. In this paper, we conducted a structured and comprehensive overview of the latest techniques in deep learning for multivariate time series anomaly detection methods.

View Article and Find Full Text PDF

Improved Intelligent Condition Monitoring with Diagnostic Indicator Selection.

Sensors (Basel)

December 2024

Faculty of Mechanical Engineering and Robotics, AGH University of Krakow, 30-059, Krakow, Poland.

In this study, a predictive maintenance (PdM) system focused on feature selection for the detection and classification of simulated defects in wind turbine blades has been developed. Traditional PdM systems often rely on numerous, broadly chosen diagnostic indicators derived from vibration data, yet many of these features offer little added value and may even degrade model performance. General feature selection methods might not be suitable for PdM solutions, as information regarding observed faults is often misinterpreted or lost.

View Article and Find Full Text PDF

This paper proposes a hybrid algorithm combining the symmetrized dot pattern (SDP) method and a convolutional neural network (CNN) for fault detection in lithium battery modules. The study focuses on four fault types: overcharge, over-discharge, aging, and leakage caused by manual perforation. An 80.

View Article and Find Full Text PDF

A New Catalogue and Insights into the 2022 Adriatic Offshore Seismic Sequence Using a Machine Learning-Based Procedure.

Sensors (Basel)

December 2024

Istituto Nazionale di Geofisica e Vulcanologia, 00143 Rome, Italy.

This paper presents a new catalogue of the 2022/2023 Adriatic Offshore Seismic Sequence obtained by machine learning-based processing. The procedure performs the automatic picking and association of phases starting from the analysis of the continuous waveforms recorded by 40 seismic stations of the Italian National Seismic Network and 5 stations of the SISMIKO emergency group network. The earthquakes were detected over a 3-month period, between 1 November 2022 and 31 January 2023.

View Article and Find Full Text PDF

Fault Detection and Diagnosis in Industry 4.0: A Review on Challenges and Opportunities.

Sensors (Basel)

December 2024

Instituto de Inovação Tecnológica-IIT, Universidade de Pernambuco-UPE R. Min. Mario Andreaza, s/n-Várzea, Recife 50950-050, PE, Brazil.

Integrating Machine Learning (ML) in industrial settings has become a cornerstone of Industry 4.0, aiming to enhance production system reliability and efficiency through Real-Time Fault Detection and Diagnosis (RT-FDD). This paper conducts a comprehensive literature review of ML-based RT-FDD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!