Effectively inverting the sign of material parameters is a striking possibility arising from the concept of metamaterials. Here, we show that the electrical properties of a p-type semiconductor can be mimicked by a metamaterial solely made of an n-type semiconductor. By fabricating and characterizing three-dimensional simple-cubic microlattices composed of interlocked hollow semiconducting tori, we demonstrate that sign and magnitude of the effective metamaterial Hall coefficient can be adjusted via a tori separation parameter-in agreement with previous theoretical and numerical predictions.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.118.016601DOI Listing

Publication Analysis

Top Keywords

hall coefficient
8
experimental evidence
4
evidence sign
4
sign reversal
4
reversal hall
4
coefficient three-dimensional
4
three-dimensional metamaterials
4
metamaterials effectively
4
effectively inverting
4
inverting sign
4

Similar Publications

Validation and Analysis of Recreational Runners' Kinematics Obtained from a Sacral IMU.

Sensors (Basel)

January 2025

Sport and Physical Activity Research Centre, Sheffield Hallam University, Olympic Legacy Park, 2 Old Hall Rd, Sheffield S9 3TY, UK.

Our aim was to validate a sacral-mounted inertial measurement unit (IMU) for reconstructing running kinematics and comparing movement patterns within and between runners. IMU data were processed using Kalman and complementary filters separately. RMSE and Bland-Altman analysis assessed the validity of each filtering method against a motion capture system.

View Article and Find Full Text PDF

The study aimed to investigate the reliability, construct, and discriminant validity of the Behavioral Regulation in Exercise Questionnaire 3 (BREQ-3) for evaluating motivational regulations and self-determination for exercise in Brazilian adults aged 50 years or older. The study assessed motivation for exercise, peripheral muscle strength, physical performance, functional capacity, cardiovascular fitness, and frailty phenotype. Two raters independently applied the BREQ-3.

View Article and Find Full Text PDF

Background: Cognitive deterioration is common in multiple sclerosis (MS) and requires regular follow-up. Currently, cognitive status is measured in clinical practice using paper-and-pencil tests, which are both time-consuming and costly. Remote monitoring of cognitive status could offer a solution because previous studies on telemedicine tools have proved its feasibility and acceptance among people with MS.

View Article and Find Full Text PDF

Thermal Transport through CTAB- and MTAB-Functionalized Gold Interfaces Using Molecular Dynamics Simulations.

J Chem Inf Model

January 2025

251 Nieuwland Science Hall, Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States.

Thermal transport coefficients, notably the interfacial thermal conductance, were determined in planar and spherical gold interfaces functionalized with CTAB (cetyltrimethylammonium bromide) or MTAB (16-mercapto-hexadecyl-trimethylammonium bromide) using reverse nonequilibrium molecular dynamics (RNEMD) methods. The systems of interest included (111), (110), and (100) planar facets as well as nanospheres ( = 10 Å). The effect of metal polarizability was investigated through the implementation of the density-readjusted embedded atom model (DR-EAM), a polarizable metal potential.

View Article and Find Full Text PDF

Reliability of running gait variability measures calculated from inertial measurement units.

J Biomech

January 2025

Sport and Physical Activity Research Centre, Sheffield Hallam University, Olympic Legacy Park, 2 Old Hall Rd, Sheffield S9 3TY, United Kingdom. Electronic address:

Changes to the variability within biomechanical signals may reflect a change in the health of the human system. However, for running gait variability measures calculated from wearable device data, it is unknown whether a between-day difference reflects a shift in system dynamics reflective of a change in human health or is a result of poor between-day reliability of the measurement device or the biomechanical signal. This study investigated the reliability of stride time and sacral acceleration variability measures calculated from inertial measurement units (IMUs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!