Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We measured the transbilayer diffusion of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) in large unilamellar vesicles, in both the gel (L) and fluid (L) phases. The choline resonance of headgroup-protiated DPPC exchanged into the outer leaflet of headgroup-deuterated DPPC-d13 vesicles was monitored using H NMR spectroscopy, coupled with the addition of a paramagnetic shift reagent. This allowed us to distinguish between the inner and outer bilayer leaflet of DPPC, to determine the flip-flop rate as a function of temperature. Flip-flop of fluid-phase DPPC exhibited Arrhenius kinetics, from which we determined an activation energy of 122 kJ mol. In gel-phase DPPC vesicles, flip-flop was not observed over the course of 250 h. Our findings are in contrast to previous studies of solid-supported bilayers, where the reported DPPC translocation rates are at least several orders of magnitude faster than those in vesicles at corresponding temperatures. We reconcile these differences by proposing a defect-mediated acceleration of lipid translocation in supported bilayers, where long-lived, submicron-sized holes resulting from incomplete surface coverage are the sites of rapid transbilayer movement.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5397887 | PMC |
http://dx.doi.org/10.1021/acs.langmuir.6b04485 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!