This study was aimed to analyze the potential role of Corin in the procession of diabetic ED and to explore the underlying mechanism. Diabetic ED rat model was constructed and the characteristics of diabetic ED and control rats were recorded at 4, 8, 12, and 16 weeks. qRT-PCR and Western bloting were used to detected the mRNA and protein levels. Intracellular cGMP detection was accomplished using a commercial radioimmunoassay method. Vascular endothelial cell from rat corpus cavernosum spiral artery was isolated and transfected with si- Corin to analyzed the potential role of Corin. Cell viability was assessed using crystal violet. The results showed that diabetic ED rats showed significantly higher glucose level, and lower body weight, ICP level, and ICP/MAP ratio at 12 and 16 weeks in diabetic ED rats compared with control rats. The protein levels of Corin, atrial natriuretic peptide (ANP) and eNOS, and the level of cGMP were significantly down-regulated in corpus cavernosum in diabetic ED rats, revealing the potential role of Corin in NO-associated diabetic ED. Further, studies proved that defect of Corin not only inhibited the vascular endothelial cell viability in high-glucose condition, but also suppressed ANP, eNOS, and cGMP expression in vascular endothelial cells. To sum up, Corin contributes to the progression of diabetic ED and the underlying mechanism is associated with the down-regulation of ANP /NO/cGMP signal pathway. J. Cell. Biochem. 118: 2325-2332, 2017. © 2017 Wiley Periodicals, Inc.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcb.25889DOI Listing

Publication Analysis

Top Keywords

potential role
12
role corin
12
vascular endothelial
12
diabetic rats
12
diabetic
9
progression diabetic
8
rat model
8
anp /no/cgmp
8
/no/cgmp signal
8
signal pathway
8

Similar Publications

The role of circulating metabolites on child development is understudied. We investigated associations between children's serum metabolome and early childhood development (ECD). Untargeted metabolomics was performed on serum samples of 5,004 children aged 6-59 months, a subset of participants from the Brazilian National Survey on Child Nutrition (ENANI-2019).

View Article and Find Full Text PDF

Immune checkpoint blockade (ICB) has significantly improved the survival for many patients with advanced malignancy. However, fewer than 50% of patients benefit from ICB, highlighting the need for more effective immunotherapy options. High-dose interleukin-2 (HD IL-2) immunotherapy, which is approved for patients with metastatic melanoma and renal cell carcinoma, stimulates CD8 T cells and NK cells and can generate durable responses in a subset of patients.

View Article and Find Full Text PDF

Quantitative Proteomics Identifies Profilin-1 as a Pseudouridine-Binding Protein.

J Am Chem Soc

January 2025

Department of Chemistry, University of California, Riverside, California 92521-0403, United States.

Pseudouridine (Ψ) is the most abundant RNA modification in nature; however, not much is known about the biological functions of this modified nucleoside. Employing an unbiased quantitative proteomics method, we identified multiple candidate reader proteins of Ψ in RNA, including a cytoskeletal protein profilin-1 (PFN1). We demonstrated that PFN1 binds directly and selectively to Ψ-containing RNA.

View Article and Find Full Text PDF

Objectives: This study aimed to comprehensively investigate the molecular landscape of gastric cancer (GC) by integrating various bioinformatics tools and experimental validations.

Methodology: GSE79973 dataset, limma package, STRING, UALCAN, GEPIA, OncoDB, cBioPortal, DAVID, TISIDB, Gene Set Cancer Analysis (GSCA), tissue samples, RT-qPCR, and cell proliferation assay were employed in this study.

Results: Analysis of the GSE79973 dataset identified 300 differentially expressed genes (DEGs), from which COL1A1, COL1A2, CHN1, and FN1 emerged as pivotal hub genes using protein-protein interaction network analysis.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a neurodegenerative disorder that results from the progressive loss of neurons in the brain followed by symptoms such as slowness and rigidity in movement, sleep disorders, dementia and many more. The different mechanisms due to which the neuronal degeneration occurs have been discussed, such as mutation in PD related genes, formation of Lewy bodies, oxidation of dopamine. This review discusses current surgical treatment and gene therapies with novel developments proposed for PD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!