We demonstrate nanoscale wrinkling on polydimethylsiloxane (PDMS) at sub-100 nm length scales via a (double) frontal surface oxidation coupled with a mechanical compression. The kinetics of the glassy skin propagation is resolved by neutron and X-ray reflectivity, and atomic force microscopy, combined with mechanical wrinkling experiments to evaluate the resulting pattern formation. In conventional PDMS surface oxidation, the smallest wrinkling patterns attainable have an intrinsic lower wavelength limit due to the coupling of skin formation and front propagation at fixed strain ε, whose maximum is, in turn, set by material failure. However, combining two different oxidative processes, ultra-violet ozonolysis followed by air plasma exposure, we break this limit by fabricating trilayer laminates with excellent interfacial properties and a sequence of moduli and layer thicknesses able to trivially reduce the surface topography to sub-100 nm dimensions. This method provides a powerful, yet simple, non-lithographic approach to extend surface patterning from visible to the deep UV range.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c6nr08255f | DOI Listing |
Small
January 2025
Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
Elastomer cure shrinkage during composite fabrication often induces wrinkling in conductive networks, significantly affecting the performance of flexible strain sensors, yet the specific roles of such wrinkles are not fully understood. Herein, a highly sensitive polydimethylsiloxane-filled graphene woven fabric (PDMS-f-GWF) strain sensor by optimizing the PDMS cure shrinkage through careful adjustment of the base-to-curing-agent ratio is developed. This sensor achieves a gauge factor of ∼700 at 25% strain, which is over 6 times higher than sensors using commercially formulated PDMS.
View Article and Find Full Text PDFSmall
December 2024
Department of Chemistry & Chemical Biology and the Brockhouse Institute for Materials Research, McMaster University, 1280 Main St. W., Hamilton, ON, L8S 4M1, Canada.
Flexible sensors have garnered significant interest for their potential to monitor human activities and provide valuable feedback for healthcare purposes. Single-walled carbon nanotubes (SWNTs) are promising materials for these applications but suffer from issues of poor purity and solubility. Dispersing SWNTs with conjugated polymers (CPs) enhances solution processability, yet the polymer sidechains can insulate the SWNTs, limiting the sensor's operating voltage.
View Article and Find Full Text PDFSmall
December 2024
School of Public Health, China Medical University, Shenyang, Liaoning, 110122, China.
Fiber strain sensors show good application potential in the field of wearable smart fabrics and equipment because of their characteristics of easy deformation and weaving. However, the integration of fiber strain sensors with sensitive response, good stretchability, and effective practical application remains a challenge. Herein, this paper proposes a new strategy based on 3D stress complementation through pre-stretching and swelling processes, and the polydimethylsiloxane (PDMS)/silver nanoparticle (AgNPs)/MXene/carbon nanotubes (CNTs) fiber sensor with the bilayer labyrinthian wrinkles conductive network on the PU fiber surface is fabricated.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom.
Adv Sci (Weinh)
October 2024
International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.
Nano/microfabrication is of fundamental importance both in scientific and industrial situations. There are, therefore, many attempts at realizing easier, quicker, and more precise fabrication of various structures; however, achieving this aim without a bulky and costly setup is still challenging. Here, we introduce a facile and versatile means of printing an ordered structure consisting of nanoscale stripes and more complicated geometries including pillars and wavy form with a lateral resolution of single micrometers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!