A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Bladder Cancer Segmentation in CT for Treatment Response Assessment: Application of Deep-Learning Convolution Neural Network-A Pilot Study. | LitMetric

Assessing the response of bladder cancer to neoadjuvant chemotherapy is crucial for reducing morbidity and increasing quality of life of patients. Changes in tumor volume during treatment is generally used to predict treatment outcome. We are developing a method for bladder cancer segmentation in CT using a pilot data set of 62 cases. 65 000 regions of interests were extracted from pre-treatment CT images to train a deep-learning convolution neural network (DL-CNN) for tumor boundary detection using leave-one-case-out cross-validation. The results were compared to our previous AI-CALS method. For all lesions in the data set, the longest diameter and its perpendicular were measured by two radiologists, and 3D manual segmentation was obtained from one radiologist. The World Health Organization (WHO) criteria and the Response Evaluation Criteria In Solid Tumors (RECIST) were calculated, and the prediction accuracy of complete response to chemotherapy was estimated by the area under the receiver operating characteristic curve (AUC). The AUCs were 0.73 ± 0.06, 0.70 ± 0.07, and 0.70 ± 0.06, respectively, for the volume change calculated using DL-CNN segmentation, the AI-CALS and the manual contours. The differences did not achieve statistical significance. The AUCs using the WHO criteria were 0.63 ± 0.07 and 0.61 ± 0.06, while the AUCs using RECIST were 0.65 ± 007 and 0.63 ± 0.06 for the two radiologists, respectively. Our results indicate that DL-CNN can produce accurate bladder cancer segmentation for calculation of tumor size change in response to treatment. The volume change performed better than the estimations from the WHO criteria and RECIST for the prediction of complete response.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5241049PMC
http://dx.doi.org/10.18383/j.tom.2016.00184DOI Listing

Publication Analysis

Top Keywords

bladder cancer
16
cancer segmentation
12
deep-learning convolution
8
convolution neural
8
data set
8
complete response
8
volume change
8
response
6
segmentation
5
bladder
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!