Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a potentially curative treatment option for patients with acute lymphoblastic leukemia (ALL). The curative potential of allo-HSCT for ALL is, in part, due to the graft-vs.-leukemia (GVL) effect, in addition to the intensive conditioning chemo-radiotherapy. However, relapse remains the major cause of treatment failure following allo-HSCT for ALL. In the allo-HSCT setting, testing for genetic markers of hematopoietic chimerism has become a part of the routine diagnostic program. Routine chimerism analysis is usually performed in peripheral blood or bone marrow; in fact, little is known about the value of tissue chimerism in patients with extramedullary relapse (EMR) after the allo-HSCT setting. The present study reports on, a case of a patient with ALL who experienced isolated cutaneous EMR despite ongoing graft-vs.-host disease (GVHD), and the results of peripheral blood and skin tissue chimerism studies using multiplex polymerase chain reaction (PCR) of short tandem repeats (STR-PCR). The present case demonstrates that, although complete remission and/or chimerism may be achieved in the bone marrow, chimerism achieved at the tissue level, and the subsequent GVL effect, may be limited, despite concomitant severe GVHD following allo-HSCT. Our tissue chimerism analysis results provide a good example of how skin tissue may be a 'sanctuary' site for effector cells of GVL, despite active GVHD and complete hematopoetic chimerism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5228357PMC
http://dx.doi.org/10.3892/mco.2016.1052DOI Listing

Publication Analysis

Top Keywords

tissue chimerism
16
chimerism analysis
12
chimerism
9
despite concomitant
8
concomitant severe
8
graft-vs-host disease
8
acute lymphoblastic
8
lymphoblastic leukemia
8
allogeneic hematopoietic
8
hematopoietic stem
8

Similar Publications

We are naturally chimeras. Apart from our own cells originating from the fertilized egg, placental mammals receive small numbers of maternal cells called maternal microchimerism (MMc) that persist throughout one's whole life. Not only are varying frequencies of MMc cells reported in seemingly contradicting phenomena, including immune tolerance and possible contribution to autoimmune-like disease, but frequencies are observable even among healthy littermates showing varying MMc frequencies and cell type repertoire.

View Article and Find Full Text PDF

Foxa1 disruption enhances human cell integration in human-mouse interspecies chimeras.

Cell Tissue Res

December 2024

Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.

Blastocyst complementation can potentially generate a rodent model with humanized nasopharyngeal epithelium (NE) that supports sustained Epstein-Barr virus (EBV) infection, enabling comprehensive studies of EBV biology in nasopharyngeal carcinoma. However, during this process, the specific gene knockouts required to establish a developmental niche for NE remain unclear. We performed bioinformatics analyses and generated Foxa1 mutant mice to confirm that Foxa1 disruption could potentially create a developmental niche for NE.

View Article and Find Full Text PDF

Microchimerism: The mystery of multiple DNA and its implications in forensic sciences.

Forensic Sci Int

December 2024

Department of Science, Institute of Forensic Sciences and Legal Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey. Electronic address:

Microchimerism (MC) refers to the presence of small amounts of foreign cells or DNA in the tissues or circulation of an individual. It generally occurs through mother-fetus interaction, twin pregnancies, and intergenerational transmission. MC is influenced by genetic and environmental factors such as toxic conditions, immunological suppression, and various diseases (influenza, COVID-19, etc.

View Article and Find Full Text PDF

Transient abnormal myelopoiesis (TAM) generally affects newborns with Down syndrome and is associated with constitutional trisomy 21 and a somatic GATA1 mutation. Here we describe a case of TAM which evolved after umbilical cord blood transplantation (UCBT), whose origin was identified as a GATA1 mutation-harboring clone in umbilical cord blood (UCB) by detailed genetic analyses. A 58-year-old male who received UCBT for peripheral T-cell lymphoma presented progressive anemia and thrombocytopenia, and leukocytosis with blast cells in the peripheral blood (PB).

View Article and Find Full Text PDF

Introduction: ABO blood type changes after ABO-incompatible hematopoietic stem cell transplantation (HSCT). Most non-hematopoietic tissues retain the expression of the patient's own ABO antigens, which may adsorb from the plasma onto the donor's red blood cells (RBCs). Because of this phenomenon, a persistent patient's A and/or B antigen could be detected in the laboratory, despite 100% white cell donor chimerism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!