Towards the construction of an interactome for Human WD40 protein family.

Bioinformation

Department of Biotechnology and Bioinformatics, Kuvempu University,Shankaraghatta - 577451, Karnataka, India.

Published: April 2016

WD40 proteins are involved in a variety of protein-protein interactions as part of a multi-protein assembly modulating diverse and critical cellular process. It is known that several proteins of this family have been implicated in different disorders such as developmental abnormalities and cancer. However, molecular functions of many proteins in this family are yet unknown and it is of clinical interest. Therefore, it is of interest to define, construct, understand, analyze, evaluate, redefine and refine an interactome for WD40 protein family. We used data from literature mining using Cytoscape followed by linear regression analysis between Betweenness centrality and stress scores to define a model to filter the nodes in a representative WD40 interactome construction. We identified 10 ranked nodes in this analysis and subsequent microarray data selected three of them in insulin resistance that is further demonstrated in HepG2 cell culture models. We also observed the expression of GRWD1, RBBP5 and WDR5 genes during perturbation. Thus, we report hub nodes of WD40 interactome in insulin resistance. It should be noted that the pipeline using protein interaction network help find new proteins of clinical importance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5237648PMC
http://dx.doi.org/10.6026/97320630012054DOI Listing

Publication Analysis

Top Keywords

wd40 protein
8
protein family
8
proteins family
8
wd40 interactome
8
insulin resistance
8
wd40
5
construction interactome
4
interactome human
4
human wd40
4
family
4

Similar Publications

NOD-like receptors (NLRs) are intracellular immune receptors that detect pathogen-associated cues and trigger defense mechanisms, including regulated cell death. In filamentous fungi, some NLRs mediate heterokaryon incompatibility, a self/non-self recognition process that prevents the vegetative fusion of genetically distinct individuals, reducing the risk of parasitism. The and NLRs in are highly polymorphic incompatibility genes ( genes) whose products recognize different alleles of the gene via a sensor domain composed of WD40 repeats.

View Article and Find Full Text PDF

The trichomes of mustard leaves have significance due to their ability to combat unfavorable external conditions and enhance disease resistance. It was demonstrated that the MYB-bHLH-WD40 (MBW) ternary complex consists of MYB, basic Helix-Loop-Helix (bHLH), and WD40-repeat (WD40) family proteins and plays a key role in regulating trichome formation and density. The bHLH gene family, particularly the Myelocytomatosis (MYC) proteins that possess the structural bHLH domain (termed bHLH-MYC), are crucial to the formation and development of leaf trichomes in plants.

View Article and Find Full Text PDF

WD repeat domain 77 protein (WDR77), a WD-40 domain-containing protein, is a crucial regulator of cellular pathways in cancer progression. While much of the past research on WDR77 has focused on its interaction with PRMT5 in histone methylation, WDR77's regulatory functions extend beyond this pathway, influencing diverse mechanisms such as mRNA translation, chromatin assembly, cell cycle regulation, and apoptosis. WDR77 is a key regulator of cell cycle progression, regulating the transition from the G1 phase.

View Article and Find Full Text PDF

, the primary pathogen that causes ginseng Alternaria leaf blight disease, can lead to a 20-30% reduction in ginseng yield. WD40 repeat-containing proteins are evolutionarily conserved proteins with diverse functions between different organisms. In this study, we characterized the roles of a WD40 repeat-containing protein in .

View Article and Find Full Text PDF

Apaf-1 is an evolutionarily conserved DNA sensor that switches the cell fate between apoptosis and inflammation.

Cell Discov

January 2025

Guangdong Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, MOE Engineering Center of South China Sea Marine Biotechnology, Southern Laboratory of Ocean Science and Engineering (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China.

Apoptotic protease activating factor 1 (Apaf-1) was traditionally defined as a scaffold protein in mammalian cells for assembling a caspase activation platform known as the 'apoptosome' after its binding to cytochrome c. Although Apaf-1 structurally resembles animal NOD-like receptor (NLR) and plant resistance (R) proteins, whether it is directly involved in innate immunity is still largely unknown. Here, we found that Apaf-1-like molecules from lancelets, fruit flies, mice, and humans have conserved DNA sensing functionality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!