A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

STAT5 drives abnormal proliferation in autosomal dominant polycystic kidney disease. | LitMetric

STAT5 drives abnormal proliferation in autosomal dominant polycystic kidney disease.

Kidney Int

Academic Nephrology Unit, Department of Infection, Immunity and Cardiovascular Disease, The Medical School, University of Sheffield, Sheffield, UK.

Published: March 2017

Autosomal dominant polycystic kidney disease (ADPKD) leads to renal failure. The hallmark of ADPKD is increased epithelial proliferation, which has been proposed to be due to atypical signaling including abnormal JAK-STAT activity. However, the relative contribution of JAK-STAT family members in promoting proliferation in ADPKD is unknown. Here, we present siRNA JAK-STAT-focused screens discovering a previously unknown proliferative role for multiple JAK-STAT components (including STAT1, STAT2, STAT4, STAT5a, and STAT5b). Amongst these, we selected to study the growth hormone/growth hormone receptor/STAT5-axis because of its known role as a regulator of growth in nonrenal tissues. Loss of STAT5 function, facilitated by pharmacological inhibition or siRNAs, significantly reduced proliferation with an associated reduction in cyst growth in vitro. To study whether STAT5 is abnormally activated in vivo, we analyzed its expression using two independent mouse models of ADPKD. STAT5 was nuclear, thus activated, in renal epithelial cyst lining cells in both models. To test whether forced activation of STAT5 can modulate proliferation of renal cells in vivo, irrespective of the Pkd1 status, we overexpressed growth hormone. These mice showed increased STAT5 activity in renal epithelial cells, which correlated with de novo expression of cyclin D1, a STAT5 target gene. Chromatin immunoprecipitation experiments revealed that STAT5 transcriptionally activated cyclin D1 in a growth hormone-dependent fashion, thus providing a mechanism into how STAT5 enhances proliferation. Finally, we provide evidence of elevated serum growth hormone in Pkd1 mutant mice. Thus, the growth hormone/STAT5 signaling axis is a novel therapeutic target in ADPKD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.kint.2016.10.039DOI Listing

Publication Analysis

Top Keywords

stat5
9
autosomal dominant
8
dominant polycystic
8
polycystic kidney
8
kidney disease
8
renal epithelial
8
growth hormone
8
growth
7
proliferation
6
adpkd
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!