Understanding the source of dissolved methane in drinking-water aquifers is critical for assessing potential contributions from hydraulic fracturing in shale plays. Shallow groundwater in the Texas portion of the Haynesville Shale area (13,000 km ) was sampled (70 samples) for methane and other dissolved light alkanes. Most samples were derived from the fresh water bearing Wilcox formations and show little methane except in a localized cluster of 12 water wells (17% of total) in a approximately 30 × 30 km area in Southern Panola County with dissolved methane concentrations less than 10 mg/L. This zone of elevated methane is spatially associated with the termination of an active fault system affecting the entire sedimentary section, including the Haynesville Shale at a depth more than 3.5 km, and with shallow lignite seams of Lower Wilcox age at a depth of 100 to 230 m. The lignite spatial extension overlaps with the cluster. Gas wetness and methane isotope compositions suggest a mixed microbial and thermogenic origin with contribution from lignite beds and from deep thermogenic reservoirs that produce condensate in most of the cluster area. The pathway for methane from the lignite and deeper reservoirs is then provided by the fault system.

Download full-text PDF

Source
http://dx.doi.org/10.1111/gwat.12500DOI Listing

Publication Analysis

Top Keywords

haynesville shale
12
dissolved methane
8
fault system
8
methane
7
controls methane
4
methane occurrences
4
occurrences shallow
4
shallow aquifers
4
aquifers overlying
4
overlying haynesville
4

Similar Publications

Although there are papers on the persistence of energy series including the persistence of shale gas, the impact of recent developments such as the Covid-19 pandemic and Russia-Ukraine conflict have been rarely explored in the existing literature This paper examines the structure of shale gas production in the U.S. by looking at the degree of persistence across different areas, with the aim to determine if shocks in the series are permanent or transitory.

View Article and Find Full Text PDF

Shale gas has become one of the important contributors to the global energy supply. The declining pattern of the gas production rate with time from an unconventional gas reservoir is due to the depletion of shale gas stored in the nanovoids of the shale formation. However, there are only limited ways to predict the variation of the gas production rate with time from an unconventional gas reservoir.

View Article and Find Full Text PDF

The fluid oil and gas volumes (S1) retained within the shales are one of the most important parameter of producible fluid oil and gas saturations of shales together with total organic carbon content. The S1 volumes can directly be obtained by Rock-Eval pyrolysis analysis. However, it is time consuming and not practical to obtain samples from all intervals of all wells in any shale play.

View Article and Find Full Text PDF

Characterizing anecdotal claims of groundwater contamination in shale energy basins.

Sci Total Environ

April 2020

Affiliate of the Collaborative Laboratories for Environmental Analysis and Remediation, The University of Texas at Arlington, Arlington, TX 76019, United States of America; Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, United States of America. Electronic address:

The increased societal monitoring of unconventional oil and gas development (UD) has brought forth tremendous scrutiny over the environmental stewardship and subsequent public health impacts of surface and sub-surface activities. Concerns over groundwater quality in shale energy basins have prompted concerned citizens into monitoring UD activities for a series of qualitative parameters, and even coordinating sampling efforts for chemical analysis. Here we present a list of analytical parameters, hierarchically structured to guide concerned citizens through an efficient and cost-effective monitoring program.

View Article and Find Full Text PDF

Hierarchical integration of porosity in shales.

Sci Rep

August 2018

Research Complex at Harwell, Harwell Campus, Oxfordshire, OX11 0FA, UK.

Pore characterization in shales is challenging owing to the wide range of pore sizes and types present. Haynesville-Bossier shale (USA) was sampled as a typical clay-bearing siliceous, organic-rich, gas-mature shale and characterized over pore diameters ranging 2 nm to 3000 nm. Three advanced imaging techniques were utilized correlatively, including the application of Xe plasma focused ion beam scanning electron microscopy (plasma FIB or PFIB), complemented by the Ga FIB method which is now frequently used to characterise porosity and organic/inorganic phases, together with transmission electron microscope tomography of the nano-scale pores (voxel size 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!