Foot-and-mouth disease virus infection suppresses autophagy and NF-кB antiviral responses via degradation of ATG5-ATG12 by 3C.

Cell Death Dis

State Key Laboratory of Veterinary Etiological Biology and National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China.

Published: January 2017

Autophagy-related protein ATG5-ATG12 is an essential complex for the autophagophore elongation in autophagy, which has been reported to be involved in foot-and-mouth disease virus (FMDV) replication. Previous reports show that ATG5-ATG12 positively or negatively regulates type I interferon (IFN-α/β) pathway during virus infection. In this study, we found that FMDV infection rapidly induced LC3 lipidation and GFP-LC3 subcellular redistribution at the early infection stage in PK-15 cells. Along with infection time course to 2-5 h.p.i., the levels of LC3II and ATG5-ATG12 were gradually reduced. Further study showed that ATG5-ATG12 was degraded by viral protein 3C, demonstrating that FMDV suppresses autophagy along with viral protein production. Depletion of ATG5-ATG12 by siRNA knock down significantly increased the FMDV yields, whereas overexpression of ATG5-ATG12 had the opposite effects, suggesting that degradation of ATG5-ATG12 benefits virus growth. Further experiment showed that overexpression of ATG5-ATG12 positively regulated NF-кB pathway during FMDV infection, marked with promotion of IKKα/β phosphorylation and IκBα degradation, inhibition of p65 degradation, and facilitation of p65 nuclear translocation. Meanwhile, ATG5-ATG12 also promoted the phosphorylation of TBK1 and activation of IRF3 via preventing TRAF3 degradation. The positive regulation of NF-кB and IRF3 pathway by ATG5-ATG12 resulted in enhanced expression of IFN-β, chemokines/cytokines, and IFN stimulated genes, including anti-viral protein PKR. Altogether, above findings suggest that ATG5-ATG12 positively regulate anti-viral NF-κB and IRF3 signaling during FMDV infection, thereby limiting FMDV proliferation. FMDV has evolved mechanisms to counteract the antiviral function of ATG5-ATG12, via degradation of them by viral protein 3C.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5386389PMC
http://dx.doi.org/10.1038/cddis.2016.489DOI Listing

Publication Analysis

Top Keywords

atg5-atg12
13
atg5-atg12 positively
12
fmdv infection
12
viral protein
12
foot-and-mouth disease
8
disease virus
8
virus infection
8
suppresses autophagy
8
degradation atg5-atg12
8
fmdv
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!