Using molecular dynamics simulations of a molecular liquid, we investigate the thermodynamic scaling (TS) of the structural relaxation time [Formula: see text] in terms of the quantity [Formula: see text], where T and ρ are the temperature and density, respectively. The liquid does not exhibit strong virial-energy correlations. We propose a method for evaluating both the characteristic exponent [Formula: see text] and the TS master curve that uses experimentally accessible quantities that characterise the anharmonic elasticity and does not use details about the microscopic interactions. In particular, we express the TS characteristic exponent [Formula: see text] in terms of the lattice Grüneisen parameter [Formula: see text] and the isochoric anharmonicity [Formula: see text]. An analytic expression of the TS master curve of [Formula: see text] with [Formula: see text] as the key adjustable parameter is found. The comparison with the experimental TS master curves and the isochoric fragilities of 34 glassformers is satisfying. In a few cases, where thermodynamic data are available, we test (i) the predicted characteristic exponent [Formula: see text] and (ii) the isochoric anharmonicity [Formula: see text], as drawn by the best fit of the TS of the structural relaxation, against the available thermodynamic data. A linear relation between the isochoric fragility and the isochoric anharmonicity [Formula: see text] is found and compared favourably with the results of experiments with no adjustable parameters. A relation between the increase of the isochoric vibrational heat capacity due to anharmonicity and the isochoric fragility is derived.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-648X/aa5a7e | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!