High-Dimensional Atomistic Neural Network Potentials for Molecule-Surface Interactions: HCl Scattering from Au(111).

J Phys Chem Lett

Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States.

Published: February 2017

Ab initio molecular dynamics (AIMD) simulations of molecule-surface scattering allow first-principles characterization of the dynamics. However, the large number of density functional theory calculations along the trajectories is very costly, limiting simulations of long-time events and giving rise to poor statistics. To avoid this computational bottleneck, we report here the development of a high-dimensional molecule-surface interaction potential energy surface (PES) with movable surface atoms, using a machine learning approach. With 60 degrees of freedom, this PES allows energy transfer between the energetic impinging molecule and thermal surface atoms. Classical trajectory calculations for the scattering of DCl from Au(111) on this PES are found to agree well with AIMD simulations, with ∼10-fold acceleration. Scattering of HCl from Au(111) is further investigated and compared with available experimental results.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.6b02994DOI Listing

Publication Analysis

Top Keywords

aimd simulations
8
surface atoms
8
high-dimensional atomistic
4
atomistic neural
4
neural network
4
network potentials
4
potentials molecule-surface
4
molecule-surface interactions
4
interactions hcl
4
scattering
4

Similar Publications

To provide insight into the interface structure in Ti particle-reinforced Mg matrix composites, this study investigates the inherent Mg/Ti interface structure formed during the solidification of supercooled Mg melt on a (0001)Ti substrate using ab initio molecular dynamics (AIMD) simulations and density function theory (DFT) calculation. The resulting interface exhibits an orientation relationship of 0001Mg//0001Ti with a lattice mismatch of approximately 8%. Detailed characterizations reveal the occurrences of 0001Mg plane rotation and vacancy formation to overcome the lattice mismatch at the inherent Mg/Ti interface while allowing Mg atoms to occupy the energetically favorable hollow sites above the Ti atomic layer.

View Article and Find Full Text PDF

Multisite synergistic interaction induced selective adsorption of CB5-TiCT complex for strontium ion: A combined theoretical and experimental study.

J Hazard Mater

January 2025

Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; School of Nuclear Science and Engineering, and Key Laboratory of Nuclear Power Systems and Equipment/Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China. Electronic address:

In this work, we use a well-defined water-soluble macrocyclic molecule cucurbit[5]uril (CB5) to modify 2D TiCT MXene and assemble a novel high-performance adsorbent CB5-TiCT for Sr ion by density functional theory and experimental methods. The structural stabilities of two distinct types of CB5-TiCT (T = F, O and OH) complexes, i.e.

View Article and Find Full Text PDF

Revisiting the in-plane and in-channel diffusion of lithium ions in a solid-state electrolyte at room temperature through neural network-assisted molecular dynamics simulations.

Phys Chem Chem Phys

January 2025

Guizhou Provincial Key Laboratory of Computing and Network Convergence, School of Information, Guizhou University of Finance and Economics, Guiyang, Guizhou 550025, P. R. China.

Developing superionic conductor (SIC) materials offers a promising pathway to achieving high ionic conductivity in solid-state electrolytes (SSEs). The LiGePS (LGPS) family has received significant attention due to its remarkable ionic conductivity among various SIC materials. molecular dynamics (AIMD) simulations have been extensively used to explore the diffusion behavior of Li ions in LiGePS.

View Article and Find Full Text PDF

Dye-zeolite nanomaterials are promising candidates for neurotransmitter detection, however, their sensing mechanism has remained speculative. Using molecular dynamics (AIMD) simulations, we demonstrate that water molecules play a critical role in stabilizing complexes formed between the dicationic dye and cationic neurotransmitters within the zeolite framework. This interaction exhibits binding motifs akin to those in protein-ligand complexes rather than conventional host-guest systems.

View Article and Find Full Text PDF

The design and screening of low cost and high efficiency oxygen reduction reaction (ORR) electrocatalysts is vital in the realms of fuel cells and metal-air batteries. Existing studies largely rely on the calculation of absorption free energy, a method established 20 years ago by Jens K. Nørskov.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!