A Self-Assembled Cofacial Cobalt Porphyrin Prism for Oxygen Reduction Catalysis.

J Am Chem Soc

Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States.

Published: February 2017

Herein we report the first study of the oxygen reduction reaction (ORR) catalyzed by a cofacial porphyrin scaffold accessed in high yield (overall 53%) using coordination-driven self-assembly with no chromatographic purification steps. The ORR activity was investigated using chemical and electrochemical techniques on monomeric cobalt(II) tetra(meso-4-pyridyl)porphyrinate (CoTPyP) and its cofacial analogue [Ru(η-iPrCHMe)(dhbq)(CoTPyP)][OTf] (Co Prism) (dhbq = 2,5-dihydroxy-1,4-benzoquinato, OTf = triflate) as homogeneous oxygen reduction catalysts. Co Prism is obtained in one self-assembly step that organizes six total building blocks, two CoTPyP units and four arene-Ru clips, into a cofacial motif previously demonstrated with free-base, Zn(II), and Ni(II) porphyrins. Turnover frequencies (TOFs) from chemical reduction (66 vs 6 h) and rate constants of overall homogeneous catalysis (k) determined from rotating ring-disk experiments (1.1 vs 0.05 h) establish a cofacial enhancement upon comparison of the activities of Co Prism and CoTPyP, respectively. Cyclic voltammetry was used to initially probe the electrochemical catalytic behavior. Rotating ring-disk electrode studies were completed to probe the Faradaic efficiency and obtain an estimate of the rate constant associated with the ORR.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.6b12404DOI Listing

Publication Analysis

Top Keywords

oxygen reduction
12
rotating ring-disk
8
self-assembled cofacial
4
cofacial cobalt
4
cobalt porphyrin
4
prism
4
porphyrin prism
4
prism oxygen
4
reduction
4
reduction catalysis
4

Similar Publications

Designing an anticancer Pd(II) complex as poly(ADP-ribose) polymerase 1 inhibitor.

Int J Biol Macromol

January 2025

School of Biological and Food Engineering, Guangxi Science & Technology Normal University, Laibin, Guangxi 546199, China. Electronic address:

Targeting DNA repair mechanisms, particularly PARP-1 inhibition, has emerged as a promising strategy for developing anticancer therapies. we designed and synthesized two 2-thiazolecarboxaldehyde thiosemicarbazone palladium(II) complexes (C1 and C2), and evaluated their anti-cancer activities. These Pd(II) complexes exhibited potent PARP-1 enzyme inhibition and demonstrated considerable antiproliferative activity against various cancer cell lines.

View Article and Find Full Text PDF

There is limited research on the influence of environmental variables on the interactions of biodegradable microplastics with chromium. This study reports the results of adsorption experiments with Cr and poly(lactic acid) (PLA) in synthetic aqueous solutions. It addresses the influence of the initial oxidation state, Cr(III) or Cr(VI), the effects of UV irradiation and the presence of organic matter.

View Article and Find Full Text PDF

In the background of antioxidation properties of selenium (Se) in plants, the role of nano‑selenium (Se-NPs) was justified in the modulation of Capsicum fruit ripening. In our study, exogenous application of 8 mg L Se-NPs on fruits through 7 days (D) of postharvest storage regulated decay rate, water loss and fruit coat firmness. Se-NPs recovered fruit coat damages with reduction of ion leakage, lipid oxidation, and accumulation of polyamines.

View Article and Find Full Text PDF

The scarcity of cost-effective and durable iridium-free anode electrocatalysts for the oxygen evolution reaction (OER) poses a significant challenge to the widespread application of the proton exchange membrane water electrolyzer (PEMWE). To address the electrochemical oxidation and dissolution issues of Ru-based electrocatalysts, an electron-donating modification strategy is developed to stabilize WRuO under harsh oxidative conditions. The optimized catalyst with a low Zirconium doping (Zr, 1 wt.

View Article and Find Full Text PDF

Aircraft anti-icers and pavement deicers improve the safety of airport operations during winter precipitation events. Runoff containing these products can contribute elevated biochemical oxygen demand (BOD) to receiving streams. We monitored runoff from Milwaukee Mitchell International Airport at one upstream site, three outfall sites, and one downstream site from 2005 to 2022 for BOD, chemical oxygen demand (COD), and freezing point depressants used in deicing and anti-icing fluids to determine the primary sources of BOD and COD in the receiving stream.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!