Purpose: Over-activation of the renin-angiotensin axis and worsening of vascular function are critical contributors to the development of hypertension. Therefore, inhibition of angiotensin-converting enzyme (ACE), a key factor of the renin-angiotensin axis, is a first line treatment of hypertension. Besides pharmaceutical ACE inhibitors, some natural peptides have been shown to exert ACE-inhibiting properties with antihypertensive effects and potentially beneficial effects on vascular function. In this study, the ACE-inhibiting potential and effects on vascular function of tryptophan-containing peptides were evaluated.
Methods: The ACE inhibitory action and stability of tryptophan-containing peptides was tested in endothelial cells-a major source of whole body ACE activity. Furthermore, the efficacy of peptides on vascular ACE activity, as well as vessel tone was assessed both ex vivo and in vivo.
Results: In human umbilical vein endothelial cells (HUVEC), isoleucine-tryptophan (IW) had the highest ACE inhibitory efficacy, followed by glutamic acid-tryptophan (EW) and tryptophan-leucine (WL). Whereas none of the peptides affected basal vessel tone (rat aorta), angiotensin I-induced vasoconstriction was blocked. IW effectively inhibited aortic ACE activity ex vivo taken from SHRs after 14-weeks of oral treatment with IW. Furthermore, IW treated SHRs showed better endothelium-dependent vessel relaxation compared to placebo.
Conclusion: This study shows strong ACE-inhibiting effects of IW, EW and WL in HUVECs and aorta. The peptides effectively counteract angiotensin-induced vasoconstriction and preserve endothelium-dependent vessel relaxation. Thus, tryptophan-containing peptides and particularly IW may serve as innovative food additives with the goal of protection from angiotensin II-induced worsening of vascular function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00394-016-1374-y | DOI Listing |
Org Lett
December 2024
Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, Guangdong, China.
ACS Pharmacol Transl Sci
October 2024
Dept. of Chemistry "G. Ciamician", University of Bologna, Campus Navile - Ue4, via Gobetti 83, Bologna 40129, Italy.
Recently, the fungus secondary metabolite cyclotetrapetide c[Trp-Phe-D-Pro-Phe] (CJ-15,208) and its derivatives deserved some attention for their unusual structure and distinctive in vitro and in vivo activity. These tryptophan-containing noncationic opioid peptides can be truly regarded as versatile picklocks capable of activating all opioid receptors. Intriguingly, minimal modification of the potent κ-opioid receptor (KOR) agonist c[D-Trp-Phe-Gly-β-Ala] () yielded c[D-Trp-Phe-β-Ala-β-Ala] (), the first KOR-specific negative allosteric modulator (NAM) reported to-date.
View Article and Find Full Text PDFChemMedChem
January 2025
Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
With the advent of antibiotic resistant organisms, development of alternate classes of molecules other than antibiotics to combat microbial infections, have become extremely important. In this context, antimicrobial peptides have taken center stage of antimicrobial therapeutic research. In this work, we have reported two cationic antimicrobial octapeptides WRL and LWRF, with broad spectrum antimicrobial activities against several strains of ESKAPE pathogens.
View Article and Find Full Text PDFJ Org Chem
October 2024
National Institute of Science Education and Research-Bhubaneswar, Jatni-Campus, Bhubaneswar 752050, India.
This report presents a silver-mediated site-selective chalcogenation of tryptophan-containing peptides with various dichalcogenides (disulfides/diselenides) at room temperature in good to excellent yields. The significant features include broad substrate scope, functional group diversity, late-stage modification of drug molecules (Dopamine and Levodopa), and various valuable postsynthetic transformations under mild conditions.
View Article and Find Full Text PDFJ Nat Prod
July 2024
Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States.
Fungal secondary metabolite (SM) biosynthetic gene clusters (BGCs) containing dimethylallyltryptophan synthases (DMATSs) produce structurally diverse prenylated indole alkaloids with wide-ranging activities that have vast potential as human therapeutics. To discover new natural products produced by DMATSs, we mined the Department of Energy Joint Genome Institute's MycoCosm database for DMATS-containing BGCs. We found a DMATS BGC in CBS 101889, which also contains a nonribosomal peptide synthetase (NRPS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!