Bimetallic catalytic growth of boron nitride nanotubes.

Nanoscale

Division of Advanced Nanomaterials, Key Laboratory of Nanodevices and Applications, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China.

Published: February 2017

Boron nitride nanotubes (BNNTs) have outstanding properties and potential applications. However, the fundamental issue regarding the growth mechanism remains an open question. Herein, we design a bimetallic catalyst that dissolves B and N simultaneously, which has been proved to be key for BNNT growth.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6nr08623cDOI Listing

Publication Analysis

Top Keywords

boron nitride
8
nitride nanotubes
8
bimetallic catalytic
4
catalytic growth
4
growth boron
4
nanotubes boron
4
nanotubes bnnts
4
bnnts outstanding
4
outstanding properties
4
properties potential
4

Similar Publications

This study examines the influence of nanofillers on the ultraviolet (UV) penetration depth of photopolymer resins used in stereolithography (SLA) 3D printing, and their impact on printability. Three nanofillers, multiwalled carbon nanotubes (MWCNT), graphene nanoplatelets (xGNP), and boron nitride nanoparticles (BNNP), were incorporated into a commercially available photopolymer resin to prepare nanocomposite formulations. The UV penetration depth (Dp) was assessed using the Windowpane method, revealing a significant reduction with the addition of nanofillers.

View Article and Find Full Text PDF

Dynamic random access memory (DRAM) has been a cornerstone of modern computing, but it faces challenges as technology scales down, particularly due to the mismatch between reduced storage capacitance and increasing OFF current. The capacitorless 2T0C DRAM architecture is recognized for its potential to offer superior area efficiency and reduced refresh rate requirements by eliminating the traditional capacitor. The exploration of two-dimensional (2D) materials further enhances scaling possibilities, though the absence of dangling bonds complicates the deposition of high-quality dielectrics.

View Article and Find Full Text PDF

Fluorescence spectra of single terrylene molecules adsorbed on hexagonal boron nitride flakes were recorded at cryogenic temperatures. The pure electronic transitions of terrylene molecules are spread over a broad energy scale from 570 to 610 nm. Surprisingly, peaks in the vibrationally resolved fluorescence spectrum show intensity variations of ≤20-fold between molecules.

View Article and Find Full Text PDF

Impact of Boron Nitride on the Thermoelectric Properties and Service Stability of CuSe.

ACS Appl Mater Interfaces

January 2025

Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China.

Improving the thermoelectric performance and service stability is essential for the effective use of cuprous selenide (CuSe). In this study, hexagonal boron nitride (h-BN) was incorporated into nano-CuSe, with the goal of enhancing thermoelectric performance and service stability. It was found that CuSe-0.

View Article and Find Full Text PDF

Chirality, a basic property of symmetry breaking, is crucial for fields such as biology and physics. Recent advances in the study of chiral systems have stimulated interest in the discovery of symmetry-breaking states that enable exotic phenomena such as spontaneous gyrotropic order and superconductivity. Here we examine the interaction between light chirality and electron spins in indium selenide and study the effect of magnetic field on emerging tunnelling photocurrents at the Van Hove singularity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!