Proteoglycans (PGs) are covalent conjugates between protein and carbohydrate (glycosaminoglycans). Certain classes of glycosaminoglycans such as chondroitin sulfate/dermatan sulfate and heparan sulfate utilize a specific tetrasaccharide linker for attachment to the protein component: GlcAβ1-3Galβ1-3Galβ1-4Xylβ1-O-Ser. Toward understanding the conformational preferences of this linker, the present work used all-atom explicit-solvent molecular dynamics (MD) simulations combined with Adaptive Biasing Force (ABF) sampling to determine high-resolution, high-precision conformational free energy maps ΔG(φ, ψ) for each glycosidic linkage between constituent disaccharides, including the variant where GlcA is substituted with IdoA. These linkages are characterized by single, predominant (> 97% occupancy), and broad (45° × 60° for ΔG(φ, ψ) < 1 kcal/mol) free-energy minima, while the Xyl-Ser linkage has two such minima similar in free-energy, and additional flexibility from the Ser sidechain dihedral. Conformational analysis of microsecond-scale standard MD on the complete tetrasaccharide-O-Ser conjugate is consistent with ABF data, suggesting (φ, ψ) probabilities are independent of the linker context, and that the tetrasaccharide acts as a relatively rigid unit whereas significant conformational heterogeneity exists with respect to rotation about bonds connecting Xyl to Ser. © 2017 Wiley Periodicals, Inc.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcc.24738DOI Listing

Publication Analysis

Top Keywords

tetrasaccharide linker
8
rigidity flexibility
4
flexibility tetrasaccharide
4
linker proteoglycans
4
proteoglycans atomic-resolution
4
atomic-resolution molecular
4
molecular simulation
4
simulation proteoglycans
4
proteoglycans pgs
4
pgs covalent
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!