Fibrillar collagens (types I, II, III, V, XI, XXIV and XXVII) constitute a sub-group within the collagen family (of which there are 28 types in humans) whose functions are to provide three-dimensional frameworks for tissues and organs. These networks confer mechanical strength as well as signalling and organizing functions through binding to cellular receptors and other components of the extracellular matrix (ECM). Here we describe the structure and assembly of fibrillar collagens, and their procollagen precursors, from the molecular to the tissue level. We show how the structure of the collagen triple-helix is influenced by the amino acid sequence, hydrogen bonding and post-translational modifications, such as prolyl 4-hydroxylation. The numerous steps in the biosynthesis of the fibrillar collagens are reviewed with particular attention to the role of prolyl 3-hydroxylation, collagen chaperones, trimerization of procollagen chains and proteolytic maturation. The multiple steps controlling fibril assembly are then discussed with a focus on the cellular control of this process in vivo. Our current understanding of the molecular packing in collagen fibrils, from different tissues, is then summarized on the basis of data from X-ray diffraction and electron microscopy. These results provide structural insights into how collagen fibrils interact with cell receptors, other fibrillar and non-fibrillar collagens and other ECM components, as well as enzymes involved in cross-linking and degradation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-3-319-49674-0_14 | DOI Listing |
BMC Musculoskelet Disord
January 2025
Department of Orthopedics, Affiliated Kunshan Hospital of Jiangsu University, No. 566 East of Qianjin Road, Suzhou, Jiangsu, 215300, China.
Objective: Research on the link between inflammatory indicators and markers of bone metabolism is currently lacking, especially the interaction between Procollagen type 1 N-terminal propeptide (P1NP), the β-C-terminal telopeptide of type 1 collagen (β-CTX), and the fibrinogen-to-albumin ratio (FAR). This study intends to fill that knowledge gap by investigating the possible link between inflammatory indicators and bone metabolism.
Methods: This observational study included 718 individuals diagnosed with osteoporotic fractures from Kunshan Hospital Affiliated to Jiangsu University between January 2017 and July 2022.
Nephrol Dial Transplant
January 2025
School of Biosciences and Bioengineering, Indian Institute of Technology (IIT), Mandi, Himachal Pradesh, India.
Cardiorenal syndrome (CRS) is represented as an intricate dysfunctional interplay between the heart and kidneys, marked by cardiorenal inflammation and fibrosis. Unlike other organs, the repair process in cardiorenal injury involves a regenerative phase characterized by proliferation and polyploidization, followed by a subsequent pathogenic phase of fibrosis. In CRS, acute or chronic cardiorenal injury leads to hyperactive inflammation and fibrotic remodeling, associated with injury-mediated immune cell (Macrophages, Monocytes, and T-cells) infiltration and myofibroblast activation.
View Article and Find Full Text PDFMatrix Biol
February 2025
Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada. Electronic address:
Advanced Glycation End Products (AGEs) are the end result of the irreversible, non-enzymatic glycation of proteins by reducing sugars. These chemical modifications accumulate with age and have been associated with various age-related and diabetic complications. AGEs predominantly accumulate on proteins with slow turnover rates, of which collagen is a prime example.
View Article and Find Full Text PDFInt Wound J
January 2025
Colzyx AB, Medicon Village, Lund, Sweden.
Wound healing is a central physiological process that restores the barrier properties of the skin after injury, comprising close coordination between several cell types (including fibroblasts and macrophages) in the wound bed. The complex mechanisms involved are executed and regulated by an equally complex, reciprocal signalling network involving numerous signalling molecules such as catabolic and anabolic inflammatory mediators (e.g.
View Article and Find Full Text PDFPLoS One
January 2025
The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America.
The extrusion bioprinting of collagen material has many applications relevant to tissue engineering and regenerative medicine. Freeform Reversible Embedding of Suspended Hydrogels (FRESH) technology is capable of 3D printing collagen material with the specifications and details needed for precise tissue guidance, a crucial requirement for effective tissue repair. While FRESH has shown repeated success and reliability for extrusion printing, the mechanical properties of completed collagen prints can be improved further by post-print crosslinking methodologies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!