Objective: To describe a series of patients with relapsing multiple sclerosis (MS) who experienced significant and unexpected disease activity within the first 12 months after switching from fingolimod to alemtuzumab.
Methods: Patients with relapsing MS treated sequentially with fingolimod then alemtuzumab who experienced significant subsequent disease activity were identified by personal communication with 6 different European neuroscience centers.
Results: Nine patients were identified. Median disease duration to alemtuzumab treatment was 94 (39-215) months and follow-up from time of first alemtuzumab cycle 20 (14-21) months. Following first alemtuzumab infusion cycle, 8 patients were identified by at least 1 clinical relapse and radiologic disease activity and 1 by significant radiologic disease activity alone.
Conclusions: We acknowledge the potential for ascertainment bias; however, these cases may illustrate an important cause of reduced efficacy of alemtuzumab in a vulnerable group of patients with MS most in need of disease control. We suggest that significant and unexpected subsequent disease activity after alemtuzumab induction results from prolonged sequestration of autoreactive lymphocytes following fingolimod withdrawal, allowing these cells to be concealed from the usual biological effect of alemtuzumab. Subsequent lymphocyte egress then provokes disease reactivation. Further animal studies and clinical trials are required to confirm these phenomena and in the meantime careful consideration should be given to mode of action of individual therapies and sequential treatment effects in MS when designing personalized treatment regimens.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5226279 | PMC |
http://dx.doi.org/10.1212/NXI.0000000000000320 | DOI Listing |
J Crohns Colitis
January 2025
Department of Medicine (Division of Gastroenterology) and Farncombe Family Digestive Health Research Institute; McMaster University, Hamilton ON, Canada.
Introduction: In inflammatory bowel disease (IBD), the number of eosinophils increases in the lamina propria of the intestinal tract, but their specific patho-mechanistic role remains unclear. Elevated blood eosinophil counts in active IBD suggest their potential as biomarkers for predicting response to biologic therapies. This study evaluates blood eosinophil count trends and their predictive value for clinical response and endoscopic improvement in patients with IBD receiving ustekinumab or adalimumab induction therapy.
View Article and Find Full Text PDFJ Med Internet Res
January 2025
Knight Foundation of Computing & Information Sciences, Florida International University, Miami, FL, United States.
Background: Digital biomarkers are increasingly used in clinical decision support for various health conditions. Speech features as digital biomarkers can offer insights into underlying physiological processes due to the complexity of speech production. This process involves respiration, phonation, articulation, and resonance, all of which rely on specific motor systems for the preparation and execution of speech.
View Article and Find Full Text PDFNucleosides Nucleotides Nucleic Acids
January 2025
Faculty of Agriculture and Allied Sciences, C.V. Raman Global University, Bhubaneswar, India.
The field of biomedical science has witnessed another milestone with the advent of RNA-based therapeutics. This review explores three major RNA molecules, namely: messenger RNA (mRNA), RNA interference technology (RNAi), and Antisense Oligonucleotide (ASO), and analyses U.S.
View Article and Find Full Text PDFJ Med Chem
January 2025
State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
A novel 2'-α-fluoro-2'-β--(fluoromethyl) purine nucleoside phosphoramidate prodrug has been designed and synthesized to treat SARS-CoV-2 infection. The SARS-CoV-2 central replication transcription complex (C-RTC, nsp12-nsp7-nsp8) catalyzed in vitro RNA synthesis was effectively inhibited by the corresponding bioactive nucleoside triphosphate (). The cryo-electron microscopy structure of the C-RTC: complex was also determined.
View Article and Find Full Text PDFCurr Cardiol Rep
January 2025
Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, 660 S Euclid Ave, Campus Box 8086, St. Louis, MO, 63110, USA.
Purpose Of Review: This review aims to explore the role of immune memory and trained immunity, focusing on how innate immune cells like monocytes, macrophages, and natural killer cells undergo long-term epigenetic and metabolic rewiring. Specifically, it examines the mechanisms by which trained immunity, often triggered by infection or vaccination, could impact cardiac processes and contribute to both protective and pathological responses within the cardiovascular system.
Recent Findings: Recent research demonstrates that vaccination and infection not only activate immune responses in circulating monocytes and tissue macrophages but also affect immune progenitor cells within the bone marrow environment, conferring lasting protection against heterologous infections.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!