Analysis of Carbon Fiber Reinforced PEEK Hinge Mechanism Articulation Components in a Rotating Hinge Knee Design: A Comparison of In Vitro and Retrieval Findings.

Biomed Res Int

Aesculap AG, Research & Development, Am Aesculap-Platz, 78532 Tuttlingen, Germany; Department of Orthopaedic Surgery, Physical Medicine & Rehabilitation, Ludwig Maximilians University Munich, Campus Grosshadern, Marchioninistrasse 15, 81377 Munich, Germany.

Published: January 2017

Carbon fiber reinforced poly-ether-ether-ketone (CFR-PEEK) represents a promising alternative material for bushings in total knee replacements, after early clinical failures of polyethylene in this application. The objective of the present study was to evaluate the damage modes and the extent of damage observed on CFR-PEEK hinge mechanism articulation components after in vivo service in a rotating hinge knee (RHK) system and to compare the results with corresponding components subjected to in vitro wear tests. Key question was if there were any similarities or differences between in vivo and in vitro damage characteristics. Twelve retrieved RHK systems after an average of 34.9 months in vivo underwent wear damage analysis with focus on the four integrated CFR-PEEK components and distinction between different damage modes and classification with a scoring system. The analysis included visual examination, scanning electron microscopy, and energy dispersive X-ray spectroscopy, as well as surface roughness and profile measurements. The main wear damage modes were comparable between retrieved and in vitro specimens ( = 3), whereby the size of affected area on the retrieved components showed a higher variation. Overall, the retrieved specimens seemed to be slightly heavier damaged which was probably attributable to the more complex loading and kinematic conditions in vivo.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5213741PMC
http://dx.doi.org/10.1155/2016/7032830DOI Listing

Publication Analysis

Top Keywords

damage modes
12
carbon fiber
8
fiber reinforced
8
hinge mechanism
8
mechanism articulation
8
articulation components
8
rotating hinge
8
hinge knee
8
wear damage
8
damage
6

Similar Publications

Hole Transfer and the Resulting DNA Damage.

Biomolecules

December 2024

Dipartimento di Chimica e Biologia "A. Zambelli", Università di Salerno, 84084 Fisciano, Italy.

In this review, we focus on the one-electron oxidation of DNA, which is a multipart event controlled by several competing factors. We will discuss the oxidation free energies of the four nucleobases and the electron detachment from DNA, influenced by specific interactions like hydrogen bonding and stacking interactions with neighboring sites in the double strand. The formation of a radical cation (hole) which can migrate through DNA (hole transport), depending on the sequence-specific effects and the allocation of the final oxidative damage, is also addressed.

View Article and Find Full Text PDF

Tianxiangdan (TXD) alleviates myocardial ischemia reperfusion-induced ferroptosis through the activation of estrogen receptor alpha (ERα).

Chin J Nat Med

January 2025

Department of Pharmacy, The Fourth College of Clinical Medicine, Xinjiang Medical University, Urumqi 830000, China; Department of Pharmacy, Xinjiang Uygur Autonomous Region Hospital of Traditional Chinese Medicine, Urumqi 830000, China. Electronic address:

Tianxiangdan (TXD), a traditional Chinese herbal remedy, demonstrates efficacy in mitigating myocardial ischemia-reperfusion (I/R)-induced damage. This study employed network pharmacology to evaluate the therapeutic targets and mechanisms of TXD in treating I/R. High-performance liquid chromatography-mass spectrometry (HPLC-MS) identified 86 compounds in TXD.

View Article and Find Full Text PDF

The mechanical properties of jointed rock bodies are important in guiding engineering design and construction. Using the particle flow software PFC2D, we conducted direct shear test simulations on joints with various inclinations and five different roughness levels to examine the models' crack extension penetration paths, damage modes, and strength characteristics. The findings indicate that the direction of the joint influences the pattern of the rock crack and its penetration route.

View Article and Find Full Text PDF

The anisotropic behavior of fiber-reinforced polymer composites, coupled with their susceptibility to various failure modes, poses challenges for their structural health monitoring (SHM) during service life. To address this, non-destructive testing techniques have been employed, but they often suffer from drawbacks such as high costs and suboptimal resolutions. Moreover, routine inspections fail to disclose incidents or failures occurring between successive assessments.

View Article and Find Full Text PDF

piR-26441 inhibits mitochondrial oxidative phosphorylation and tumorigenesis in ovarian cancer through m6A modification by interacting with YTHDC1.

Cell Death Dis

January 2025

Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office; Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology; Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine; The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.

Ovarian cancer (OC) is a heterogeneous cancer. In contrast to other tumor cells, which rely primarily on aerobic glycolysis (Warburg effect) as their energy source, oxidative phosphorylation (OXPHOS) is also one of its major metabolic modes. Piwi-interacting RNAs (piRNAs) play a regulatory function in various biological processes in tumor cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!